

Visual Objects
For

Windows 2000® and Windows XP®

Getting Started Guide

Version 2.7

 Contents

Chapter 1: Introduction
Welcome to Visual Objects!.. 1–1

Visual Programming Tools and a Complete IDE 1–2
A Fully Object-Oriented Language ... 1–3
Open Database Access .. 1–4
An Active Repository ... 1–6
A Native Code, Incremental Compiler 1–6
A Portable Executable Format, Incremental Linker........................... 1–7
Reporting Using the Report Editor ... 1–8
An Open Architecture .. 1–8

Visual Objects Features ... 1–9
In This Guide ... 1–11
What You Need to Know .. 1–13
General Typographic Conventions .. 1–13
Getting Help.. 1–15

Contents iii

Chapter 2: Installing and Starting Visual Objects
Installing Visual Objects ...2–1

AutoStart Installation..2–1
Manual Installation ...2–1

Before Starting Visual Objects ..2–3
Starting Visual Objects ..2–4
What’s Next..2–5

Chapter 3: Object-Oriented Programming
Concepts
Why Object-Orientation? ..3–1
The Paradigm Shift ...3–2
What Is an Object? ..3–4
What Is a Class? ..3–5
Inheritance: Superclasses and Subclasses ..3–9
A Real-World Example ...3–12
Additional Strengths of OOP..3–15

Encapsulation ...3–15
Modularity and Reusability ...3–16
Summary ...3–17

The Visual Objects Libraries ..3–19
What’s Next...3–22

iv Visual Objects Getting Started

Chapter 4: An Overview of the IDE
Repository-Based Development ... 4–1
The IDE Tools.. 4–4

The Repository Explorer .. 4–6
Managing Projects .. 4–8
Browsing Applications and Modules 4–9
Viewing Entities at the Module Level 4–10
Viewing Entities at the Entity Level.................................... 4–12
Browsing Classes .. 4–14
Error Browser ... 4–18

The Editors ... 4–20
Source Code Editor .. 4–22
Data Server Editors .. 4–24
The FieldSpec Editor ... 4–25
Window Editor .. 4–26
Menu Editor... 4–38
Report Editor.. 4–39
Image Editor .. 4–41

The Debugger ... 4–41
What’s Next .. 3–43

Chapter 5: Learning the Basics
Lesson 1: A Tour of the Standard Application 5–3

Creating an Application: Using the Application Wizard 5–4
Building and Running the Standard Application............................. 5–5
A Closer Look at the Application... 5–6

MDI Application Structure .. 5–7
The App:Start() Method ... 5–9
The Shell Window ... 5–10
The Empty Shell Window .. 5–15
The Standard Shell Window .. 5–17
The Child Windows.. 5–22
Default Event and Error Handling..................................... 5–24

Contents v

A Closer Look at the Standard Application5–26
The Empty Shell Window ...5–26
Opening Database Files ...5–28
Switching Between Form and Browse View5–30
The Standard Shell Window...5–33
Opening Multiple Windows...5–34
Using OLE Database Files ...5–36

Summary ...5–38
Lesson 2: Setting Up the Data Servers ..5–40

Importing the OE Data Servers Library.....................................5–41
A Quick Tour of the Customer Data Server5–43

Loading the Customer Data Server.....................................5–43
The Indexes List Box..5–46
The Fields Group Box...5–49

Creating the Orders Data Server ...5–52
Starting the DB Server Editor ..5–52
Importing the Database File ...5–54
Importing the Index Files ...5–56
Browsing Data ...5–58
Sharing Field Specifications ...5–59
Customizing Field Properties..5–62
The FieldSpec Editor..5–64

The Source Code ...5–68
Building the OE Data Servers Library5–70
Adding the Library to Order Entry’s Search Path............................5–70
Summary ...5–71

Lesson 3: Creating a Data Window ..5–72
Starting the Window Editor ...5–73
Window Properties ..5–75
Using Auto Layout...5–77

A Closer Look at the Main Data Form5–80
A Closer Look at the Sub-Data Form5–82
Customizing Windows ...5–85
Viewing Tab Order ...5–87
Moving On ..5–88

vi Visual Objects Getting Started

The Source Code .. 5–89
Summary ... 5–90

Lesson 4: Modifying the Menu.. 5–91
Adding the Customer Orders Menu Command............................. 5–92
Previewing Your Work... 5–94
Summary ... 5–94

Lesson 5: Adding the Ordering Methods 5–95
Modifying the Menu ... 5–96

Adding Commands .. 5–96
Defining Menu Properties .. 5–99

Creating the Methods ... 5–101
The TEXTBLOCK Entity... 5–102
The Methods ... 5–103

Enabling the Menu Commands .. 5–105
Summary .. 5–107

Lesson 6: Running the Order Entry Application 5–108
Generating an Executable File ... 5–108
Running the Application .. 5–109
Looking at the New Features .. 5–109
What’s Next.. 5–115

Contents vii

Chapter

1 Introduction

Welcome to Visual Objects!
Visual Objects is a fully object-oriented application development
system that allows you to quickly and easily create sophisticated
applications that run under Microsoft Windows and
Windows NT. Its power and flexibility offer new opportunities
and technology to application developers of all levels and
backgrounds.

Visual Objects gives you the power to create high-performance,
mission-critical, cutting-edge applications and components that
deliver everything Windows users have come to expect,
including:

■ Multiple document interfaces (MDI), with no constraints on
simultaneously opening several documents (such as
databases or text files) or the same document in several
different windows

■ Event-driven operation, with no limitations on user
flexibility and control

■ Top-flight graphical appearance (including support for
Windows common controls, OCX controls, and OLE 2.0) and
full-fledged annotation, prompting, and help

■ Support for Windows conventions and subsystems, such as
the Clipboard, drag-and-drop editing, and help

Introduction 1–1

Welcome to Visual Objects!

All of this is achieved by bringing together the worlds of
object-oriented programming (OOP), graphical user interfaces
(GUIs), visual design tools, and traditional business languages—
all in a single, integrated desktop.

Visual Programming Tools and a Complete IDE

The integrated development environment (IDE) provides tools
that enable you to visually design the forms, menus, reports,
icons, and so on, for your applications using point-and-click and
drag-and-drop techniques. These tools let you see the result of
your design as it progresses.

The IDE is an intuitive and powerful environment for creating
applications; for example, the Repository Explorer is patterned
after the Windows Explorer which provides a consistent look
and feel so you can get to work right away. The Repository
Explorer allows you to browse projects, applications, libraries
and DLLs, modules, entities, classes and errors.

The IDE offers a sophisticated and powerful environment for the
advanced developer, with features that allow you to spend more
time on the business logic aspect of application development.
Visual Objects, for example, automatically tracks and maintains
the relationships between the various pieces of an application
for you, determining which components need to be compiled in
order to build an application. Make files and compiler and
linker script files are, therefore, obsolete.

Additionally, the IDE offers the capability of incremental linking
when running from inside the IDE or debugging. This feature
enables fast prototyping and quick feedback when you make
changes to your application, it also enables you to test and
debug your applications efficiently using the debugger in
the IDE.

1–2 Visual Objects Getting Started

Welcome to Visual Objects!

Visual Objects offers a just-in-time debugging feature. If an
exception or a runtime error occurs while running an application
(that has the debug option turned on in the application
properties) from within the IDE, the debugger will be invoked in
order to look at the error.

After developing, testing, and debugging your application,
distributing it as a standalone EXE is easy. You simply click a
button to generate an EXE, which can be distributed royalty-free
to your end users.

A Fully Object-Oriented Language

The Visual Objects language is fully object-oriented. You may
ask: Why object-orientation? There are many reasons, the most
fundamental of which is that programming for event-driven,
GUI environments presents a set of challenges that are aptly met
by object-oriented programming (OOP).

As you read through the Visual Objects documentation (in
particular, this guide and the Programmer’s Guide), you will see
how OOP naturally lends itself to GUI environments by giving
you the capability to develop complex systems through
standard, reusable components, in a manner that models the real
world.

To facilitate object-oriented programming, Visual Objects
includes extensive class libraries for:

■ GUI programming

■ Database management

■ Internet client services

■ Internet server applications

■ Object linking and embedding (OLE)

■ Reporting

Introduction 1–3

Welcome to Visual Objects!

These libraries provide very powerful building blocks for your
applications. In addition, the visual tools in the IDE exploit the
strengths of object-orientation by using these class libraries to
generate object-oriented code based on your designs.

Note: Class libraries are no different from other libraries you
would use in your applications—instead of containing functions,
for example, they contain class and method definitions.

The language also features a structured superset of the Xbase
language. (Xbase is the industry standard term for those
programming languages that inherit from the original dBASE
system, including CA-Clipper, CA-dBFast, the dBASE family of
products, and FoxPro.)

The Xbase superset contains extensions for Windows and its
environment, including the ability to access all Win32
Application Programming Interface (API) functions for
low-level, system programming.

Open Database Access

Visual Objects gives you a wide variety of choices in terms of
database access. It supports:

■ Both procedural and object-oriented access to Xbase
databases

 Visual Objects supports the procedural database commands
and functions—such as SKIP and EOF()—that are traditional
to Xbase languages.

 It also includes, however, an object-oriented interface to
Xbase database management. The object-oriented interface
is akin, semantically and syntactically, to the commands and
functions traditionally used in procedural access. Instead of
commands like APPEND, COMMIT, and ZAP, for example,
you will use methods named Append(), Commit(), and
Zap() to perform the same operation.

1–4 Visual Objects Getting Started

Welcome to Visual Objects!

 Note: With these new methods, all the capabilities of the
traditional Xbase approach are provided, but have been
enhanced to fit the event-driven, multi-tasking nature of
GUI applications.

■ Access to both Xbase and SQL databases

 When using an object-oriented approach to database
management, both Xbase and SQL databases can be
accessed. Furthermore, access to these two different types of
databases is accomplished using a single, compatible
protocol. This allows an application to manage Xbase and
SQL databases with the same code.

■ Several different Xbase/SQL database formats

 When accessing Xbase databases (using either a procedural
or object-oriented approach), you can choose from a variety
of file formats. This is accomplished through replaceable
database driver (RDD) technology. With RDDs, a single
application can access different database file formats using a
common language interface. This allows you to tailor your
applications so that migrating from one database format to
another is simple and straightforward.

 Visual Objects supplies several popular RDDs, and through
its open architecture allows for development of third-party
RDDs. See the Replaceable Database Drivers section in the
“Using DBF Files” chapter in the Programmer’s Guide for
more information about RDD technology. Refer to the
“RDD Specifics” appendix in the same volume for detailed
information about specific RDDs.

 Similarly, support for SQL databases is accomplished using
Open Database Connectivity (ODBC), a widely used API for
SQL access under Windows. This technology also uses
replaceable drivers, supplied as dynamic link libraries
(DLLs), which standardize the interface to the various
database formats. Visual Objects comes bundled with DLLs
for many of the popular ODBC formats, and provides
language support for a superset of the standard ODBC API,
as well as, an object-oriented interface compatible with that
used for Xbase database files.

Introduction 1–5

Welcome to Visual Objects!

An Active Repository

Visual Objects is a repository-based system. The multi-tiered
repository is where the IDE stores all application components,
and it automatically manages the relationships between the
various components of an application. If you make a change to
a library component, for example, the repository automatically
marks every application with that library in its search path,
indicating that it should be rebuilt.

With Visual Objects you can create and use multiple repositories
which are represented by projects. This allows a repository to be
used on a system different from the system that created the
project. Being able to use different projects makes it much more
convenient to have a backup copy of your work.

A Native Code, Incremental Compiler

Visual Objects can compile your applications down to native
machine code. This gives you the flexibility of using OOP
without sacrificing runtime performance.

To support iterative development, the compiler works with
entity-level granularity. Entities, as explained in greater detail
later in this guide, are the smallest pieces of an application (like
a function or a global variable declaration). Entity-level
granularity means that when you make a change to an
application and then build the application, the compiler
determines which entities of the application have changed (or
are affected by the change), and automatically recompiles only
those pieces, as opposed to recompiling entire modules.

Entity-level granularity is a powerful feature because it speeds
development—you spend less time waiting for your application
to be built and more time designing, enhancing, and fine-tuning.
It also makes prototyping fast and easy.

1–6 Visual Objects Getting Started

Welcome to Visual Objects!

Visual Objects uses foreground compilation which prevents
activity in the IDE while compiling your application.

A Portable Executable Format, Incremental Linker

Visual Objects uses an incremental linker to speed the
development process. The linker produces EXEs in portable
executable format, the new standard for 32-bit applications.

Incremental linking means that once an application has been
compiled and linked to create an executable file, changes made
to the application are tracked so that only modified code needs
to be linked. This allows you to test and prototype applications
faster than ever before.

Incremental linking of resources requires more space for an
individual entity than actually needed in the EXE file, therefore,
incrementally linked EXE files are bigger than non-incrementally
linked EXE files. Visual Objects uses incremental linking only
for temporary EXE files called DBG files. These DBG files reside
in the same directory as the target EXE file and are used when
running the application from within the IDE. It is important to
note that certain changes to your application may require a full
relink. A full relink can be forced by manually deleting the DBG
files; this will force the linker to fully relink the application.

Reporting Using the Report Editor

The Visual Objects Report Editor provides powerful reporting
capabilities for your applications. The Visual Objects Report
Editor consists of the CA-Report Writer and the CA-Report
Viewer.

Introduction 1–7

Welcome to Visual Objects!

The CA-Report Writer offers a sophisticated database publishing
interface, allowing you to design and produce custom database
reports at the press of a button. While in the CA-Report Writer,
you can use its intuitive, GUI environment to define the
structure and specifications of the report. For example, you can
add fields, text, tables, and pictures to a report, and format the
various sections (like headers, footers, and titles). The
CA-Report Viewer allows you to view your reports as they are
created.

In addition to creating your application reports, the Report
Editor will allow you to provide your users with the ability to
create their own reports from within your Visual Objects
applications.

An Open Architecture

Visual Objects features extensible subsystems that facilitate the
integration of third-party tools within the product. It also
supports a number of powerful features that allow your
applications to interact with other applications and exchange
data, as well as, use routines written in other languages, such as
C, C++, Pascal, and COBOL.

For example, you can:

■ Access the functions stored in a DLL

 A DLL is a library of functions in which only the interface
definitions are visible, not the source code. Visual Objects
has the necessary language support (such as pointers and
structures) to access standard Windows DLLs, including the
Win32 API.

1–8 Visual Objects Getting Started

Visual Objects Features

 Not only can you use DLLs in your applications, but you can
build and debug them in Visual Objects. Visual
Objects-generated DLLs can be used with either Visual
Objects applications or with foreign applications. When
using a Visual Objects DLL with a foreign host, it is the
user’s responsibility to ensure that the exported DLL
interface is compatible with the host’s capabilities.

■ Use Dynamic Data Exchange (DDE) to exchange
information with other DDE-compatible applications.

■ Interface with your system’s Clipboard facility to transfer
different types of data between applications.

■ Use object linking and embedding (OLE) to incorporate
controls, objects, and even entire OLE-compliant
applications into your Visual Objects applications.

■ With just a few mouse clicks you can easily enhance the
power of your applications by using OLE 2.0. OLE 2.0 is a
powerful way to integrate professional full-fledged
applications for a wide range of areas. OLE objects can also
be stored in DBF files.

■ Use the Automation Server to create a Visual Objects class
from the OLE Automation objects provided by third-party
applications. This allows you to control applications
remotely through their macro language using Visual Objects
syntax. You can also create OLE Automation Server
applications, ActiveX controls, and Active Server Page (ASP)
components.

Now that you have had a brief overview of Visual Objects, let’s
learn about its new features.

Visual Objects Features
Visual Objects provides support for:

■ Internet client services

Introduction 1–9

Visual Objects Features

 Protocol implementation for low-level Internet access, file
transfers, and e-mail.

■ Internet server applications

 Internet interfaces for CGI applications and ISAPI libraries.

■ OLE Automation server applications

 Inter-application communication via OLE automation server
applications or via Web servers supporting ASP
components.

■ ActiveX control creation

 Inter-application communication utilizing Visual Objects
windows as ActiveX controls within other applications.

■ Win32 native console applications

 Alternative to Terminal Lite applications for character-based
debugging and logging output.

Other major features include the following:

■ Version control

 An interface for source code control provides integration
with Microsoft Common Source Code Control API.

■ Compiler enhancements

■ Thread-safe kernel runtime

■ Reindexing projects without shutting down

■ Support for DLL debugging

■ New system-wide options for the Repository Explorer,
Source Code Editor, and Debugger

■ Predefined application frameworks for the above-mentioned
Internet, OLE server, and console application types, as well
as additional application options

■ Keyboard access for properties

■ New Window Editor options, including a window type,
OLEDataWindow, and new controls

■ Data-aware text controls

1–10 Visual Objects Getting Started

In This Guide

■ Interactive tab order setting

■ Band-style toolbars in applications

All of this technology greatly enhances the power, flexibility,
and ease that Visual Objects offers application developers of all
levels and backgrounds.

As you may have surmised by now, much of the power of
Visual Objects comes from its class libraries, which provide an
elegant and extensible way of using supporting services. They
are tightly integrated with both the object-oriented
programming language and the visual design tools in the IDE.
Naturally, libraries and classes have been added for Internet
resources and to support OLE server components, and console
applications.

Similarly, the IDE has been updated with features that reflect
Visual Objects innovative technology. These include the
Application Gallery, with its many predefined application
frameworks and samples to show their uses.

In This Guide
This Getting Started guide is your introduction to Visual Objects.
It contains all the information you need to get a quick and
productive start, and is organized into the following chapters:

Chapter 1, Introduction, provides an overview of Visual
Objects and also details the conventions and symbols used in
presenting the information in this guide. Because they are vital
to your understanding of this guide, it is highly recommended
that you take the time to familiarize yourself with them.

Chapter 2, Installing and Starting Visual Objects, provides
the information you need to install and start Visual Objects.

Introduction 1–11

In This Guide

Chapter 3, Object-Oriented Programming Concepts,
describes the basic principles of object-oriented programming
(OOP).

Chapter 4, An Overview of the IDE, presents an overview of
some of the features of the IDE.

Chapter 5, Learning the Basics, provides a hands-on tutorial
that you can work through to build a sample Visual Objects
application.

1–12 Visual Objects Getting Started

What You Need to Know

What You Need to Know
In addition to an understanding of basic programming concepts,
this guide assumes that you are familiar with Microsoft
Windows terminology and navigational techniques, including
how to work with standard Windows items like menus, dialog
boxes, the Clipboard, and the Control Panel. If you are
unfamiliar with Windows, please refer to your Windows
documentation before using Visual Objects.

Note: In general, when this guide indicates a procedure using
toolbar buttons or mouse actions, it takes for granted that you
know the alternative procedure, using only the keyboard. For
example, you will be directed in most cases to “click the Find
toolbar button,” rather than “select the Edit Find command,
press Alt+F3, or press Alt+E, F.”

General Typographic Conventions
This guide also employs several typographic conventions (such
as capitalization or italic formatting) to distinguish between
language elements and discussion of them.

Key Names The names of keys, such as Enter, Ctrl, and Del, appear in the
document as they do on your keyboard, where possible.

Note that when referring to the four arrow keys as a group, they
are referred to as Direction keys; however, the name of each
Direction key (for example, Up arrow or Left arrow) is used
when referring to them individually.

Key Combinations Whenever two keys are joined together with a plus (+) sign (for
example, Ctrl+R), you should hold down the first key while
pressing the second key to complete the command. Release the
second key first.

Introduction 1–13

General Typographic Conventions

Key Sequences When keys are separated by a comma (,), press them in the
sequence indicated. The keystroke sequence Alt+E, C, for
example, indicates that you should hold the Alt key down while
pressing the E key, release them both, and then press and release
the C key.

User Input Examples The following conventions are used for user input:

■ Literal information (text that the user must enter exactly as
shown) is shown in bold:

 Insert the diskette into drive A and type a:\install.

■ Placeholder text (variable information a user must enter) is
denoted by a bold and italic typeface:

 Enter login username.

UPPERCASE The following appear in uppercase:

■ Commands (like CLEAR MEMORY)

■ Keywords (for example, AS, WORD, and INT)

■ Reserved words (for example, NIL, TRUE, and FALSE)

■ Constants (for example, NULL_STRING and MAX_ALLOC)

Mixed Case / Initial
Capitalization

The following are displayed using mixed case:

■ Function, method, and procedure names (like
SetDoubleClickTime() and Abs())

■ Class names (for example, TopAppWindow)

■ Variable names (for example, oTopAppWindow and
nLoopCounter)

Italic Variable names are displayed in italic in syntax (for example,
Abs(<nValue>)) and when referring to them in the discussion
text.

1–14 Visual Objects Getting Started

Getting Help

Cross References The following conventions are used:

■ Guide name in italic:

 See the IDE User Guide.

■ Part name in single quotes:

 See ‘Database Programming’ in the Programmer’s Guide.

■ Chapter name in double quotes:

 See “Creating an Application” in the IDE User Guide.

■ Section name as it appears in the document:

 Also see the Saving a Program section.

Getting Help

Visual Objects provides an online help system, which can be
used to display information on your console as you work. You
can use any of the following Help menu commands:

Menu Command Description

Index Displays an index of available help topics
about the Visual Objects language and IDE.

Context Help Allows you to get context-sensitive help for
an item or area currently displayed on your
screen.

How to Use Help Describes how to use the Windows Online
help system.

In the IDE you can also receive context-sensitive help for a menu
or menu command by pressing either the F1 key or the Shift+F1
key combination. Press Shift+F1 to receive context-sensitive
help for most dialog boxes and windows.

Introduction 1–15

Getting Help

Additionally, when the Source Code Editor is open, you can
receive context-sensitive help for the keywords, commands,
classes, and functions in a selected module or entity. Simply
highlight the keyword, command, class, or function and press
the Shift+F1 key combination.

1–16 Visual Objects Getting Started

Chapter

2
Installing and Starting Visual
Objects

This chapter discusses requirements and procedures for
installing and starting Visual Objects.

Installing Visual Objects

AutoStart Installation

After Windows has started, place the Visual Objects CD-ROM
in the CD-ROM drive. Once this is done, the installer is
automatically invoked. Follow the steps provided below under
the Manual Installation instructions, skipping steps 1–3.

Manual Installation

To install Visual Objects on your hard drive:

1. Insert the Visual Objects CD-ROM in the CD-ROM drive.

2. Click the Start button, then click Run.

3. In the Run dialog box, enter:

 cd-rom_drive:\setup

 where cd-rom_drive represents the drive letter of the
CD-ROM drive, for example, you might type e:\setup.

Installing and Starting Visual Objects 2–1

Installing Visual Objects

4. Choose OK to invoke the Installer.

 The first window that is presented allows you to select the
language that the installer will use. NOTE that this is only
applicable during the installation process and not during the
normal use of Visual Objects.

5. Having selected your preferred language, press the Next >
button. The window will now display the License Agreement,
which you should read and then agree to by pressing the
Yes button.

6. The next window displays important information regarding
the changes that have taken place since the last version was
released. After reading this information, press the Next >
button to proceed to the Registration Screen.

7. The registration information in order to proceed with the
installation. Once you have entered this information, press
the Next> button. NOTE: the Product ID# can be found on
the back of the CD case.

8. The next window allows you to select the drive and
directory for the installation. This can be achieved by using
the mouse in the selection boxes, by typing directly into the
path box or by using a mixture of both. If the directory that
you require is not present on the disk, the installer will
create it for you but you will need to type it in on the screen.
Once you are happy that the drive and path are correct,
press the Next > button to move to the Program Folders
window. NOTE: For the rest of this guide we will assume
that you have used C:\CAVO27 as your installation path.

9. The Program Folders are displayed from the Start/Programs
menu and help you group together items that are associated
with each other. In this window you are able to select an
existing folder or enter a new folder that will be created fore
you. Once you are happy with the name of this group, press
the Next > button to move to the last window. NOTE: The
default that you are provided with is Visual Objects 2.7 and
for the rest of this guide we will assume that this has not
been changed.

2–2 Visual Objects Getting Started

Before Starting Visual Objects

10. You have now provided enough information for the
installation to start and this is the last chance to change
things before the files are copied to disk. If you want to
make change you can use the < Back button to move to
previous screens and then come back through to this
window. When you are happy with all of the settings, press
the Next > button to start the installation.

11. The files will now be copied to disk and you will see two
progress bars indicating the status of this operation. The top
bar shows the current process while the bottom bar indicates
the percentage of the overall operation completed along
with an estimation of the remaining time required. When
this operation is completed the window will be replaced
with the Setup Finished screen.

12. The setup is now complete and the install process informs
you of this by presenting you with this screen. Acknowledge
the completion by pressing the Finish button and Visual
Objects is installed.

Before Starting Visual Objects
Depending on your individual requirements, you may need to
adjust certain settings before starting Visual Objects. For
example, you should add C:\CAVO27\Bin manually to your
PATH environment variable. This ensures that your
applications run properly from within the IDE.

Starting Visual Objects

Starting Visual Objects
You can start Visual Objects by choosing the Visual Objects 2.7
folder and then choosing the Visual Objects 2.7 menu item.

The Visual Objects shell window appears an inside it is the
Project Selection dialog.

Later on you will read about the structure of Visual Objects
storage and find that you can have multiple Projects, each of
which has its own repository. Inside each repository are the
applications, libraries and DLLs that make up your systems.

Visual Objects can only address one project at a time and closes
the current project before opening the next. To be able to look at
two or more projects at the same time, you are able to start more
than one instance of Visual Objects and open a different project
in each of them.

When you first start Visual Objects there is only the Default
Project available but others will appear in this list as you create
them.

For now, click on the Default Project entry in the list and press
the Select button.

2–4 Visual Objects Getting Started

What’s Next

The IDE will now load for this project. This IDE desktop is also
referred to as the Repository Explorer:

The Repository Explorer is the primary workspace in Visual
Objects. It contains all the applications, libraries, and DLLs
currently stored in the repository. Using the Repository
Explorer, you can view the contents grouped by module, entity
type, or class.

What’s Next
Now that you have installed Visual Objects and learned how to
start it, the next chapter introduces you to some of the basic
tenets of object-oriented programming, which is the very heart
of the Visual Objects architecture.

Chapter

3
Object-Oriented
Programming Concepts

Component
Refers to both the
compile-time class
definition and the
runtime object of that
class. May also refer
to a class library.

In the first chapter of this guide, it was stated that
object-oriented programming (OOP) “naturally lends itself to
GUI environments by giving you the capability to develop
complex systems through standard, reusable components, in a
manner that models the real world.” In this chapter, we’ll
explore some of the basic OOP concepts and, in doing so,
explain exactly what is meant by this statement.

Why Object-Orientation?
What is the motivation for learning OOP? Furthermore, what
possible motivation is there to rewrite existing programs in an
object-oriented fashion?

The reasons are simple. First, it’s a logical adaptation of the way
we already view the world. Our perception of the world is a
collection of objects that interact with each other; therefore, it is
natural for us to think of software development in the same way.
Secondly, it’s a smart business decision—objects are intrinsically
modular and therefore encourage both reusability and safe,
incremental enhancements. Finally, object-orientation fits the
event-driven nature of GUI programming rather well. We’ll
examine all these reasons in greater detail in this chapter, but
first, let’s explore this last point.

Object-Oriented Programming Concepts 3–1

The Paradigm Shift
Paradigm
Model of behavior.

People often speak of a “paradigm shift” when programming
for GUI environments. This is because Windows applications
behave differently from traditional DOS applications.

In applications developed before GUIs became commonplace,
the program dominated the conversation with the user. The
program asked the user for input and displayed output in
return. When filling in an insurance claim form, for example,
the program led the user through each item that it required.

In well-designed GUI applications, however, the user is in
control. Not only can users flip between applications at will, but
they can also choose what to do next in an application (for
example, which fields in the form to fill in and which to leave to
the imagination of the application). Windows applications,
therefore, are said to be event-driven because the events
generated by the user dictate what happens in the application.
This is contrary to DOS applications in which the program has
control. (For more information about moving from character
mode to Windows, see the Programmer’s Guide.)

Event-Driven
Programming

Not surprisingly, the new paradigm has profound effects on
how you program. Flexible control for the user means
changing the way you program.

It is this shift to “the user in control” that caused developers to
select object-orientation as the way to tackle GUI development.

Developers came to this conclusion because event-driven
behavior requires very modular programming: the program
must execute in tiny atomic units that can start up at any time,
do their task quickly, and finish. As we previously stated and as
you will soon see, objects are intrinsically modular.
Object-oriented programming, therefore, naturally lends itself to
GUI environments; traditional procedural programming
techniques do not.

3–2 CA-Visual Objects Getting Started

The Paradigm Shift

Note: This does not mean, however, that you need to throw out
all your code. Procedural programming does have its place in
OOP; however, instead of directing the application, it is used in
smaller units to handle the different actions that the user can
perform.

Thinking in an
Object-Oriented Way

Thinking in object-oriented terms also involves another shift:
changing the way you view software development. While
object-orientation helps meet the challenges of programming
for event-driven GUI environments, it doesn’t mix well with
conventional programming training.

Traditionally, programmers are taught to tackle a programming
problem by breaking it down into the operations that need to be
performed. We were taught to think about the steps involved in
solving a problem. We aligned ourselves with the processes
involved.

Solving a problem using an object-oriented approach, on the
other hand, means thinking about the things in the system. By
breaking down large, complex things into smaller, simpler
components, we reach the same goal—software that solves a
problem. For example, rather than seeing an inventory system
in terms of reducing stock, repricing, or posting to the general
ledger, we would look at it in terms of its elements—such as
parts, pick orders, and warehouse bins—and their individual
properties and associated actions.

It’s easy to overcomplicate the difference between
object-oriented programming and traditional process-oriented
programming. However, in reality, it’s just a matter of
perspective. The plan and overall objective are the same in both
disciplines—we’re still creating a solution to a problem by
breaking that problem into several simpler ones. The only
difference is in the approach we take solving the problem.

Object-Oriented Programming Concepts 3–3

The biggest hurdle is actually learning to think about
programming differently. Once you’ve mastered it, though,
you’re likely to find OOP a more intuitive way of doing things,
because it more closely resembles your natural thought
processes—you already think in an object-oriented way. (And
OOP introduces a world of advantages you haven’t even seen
yet!)

What Is an Object?
You are an object, so is the chair in which you’re sitting, also this
manual you’re reading. In fact, as you look around, you’ll notice
plenty of objects. Your computer, your office, your coffee mug,
your chair. You already think in an object-oriented way.

What do you notice about objects? In most cases, you’ll
probably notice two things:

1. The object has certain properties that help you figure out
what it is and classify it.

 For example, a typical office chair has wheels, a seat, and a
back.

2. The object has actions associated with it.

 For example, the chair described above can roll across the
floor.

In the object-oriented world of software development, this is
also true. An object—like a window or a check box—has
properties (like a border or a caption) and actions (like
displaying itself on the screen, in the case of a window, or
toggling the check mark indicator on and off, in the case of a
check box). Instead of actions, however, they are referred to as
methods (more on this later).

3–4 CA-Visual Objects Getting Started

What Is a Class?

What Is a Class?
To begin to think of programming in terms of the things in the
system (rather than the processes), it is imperative that you
understand what it means to classify something.

When we classify a thing, we create an abstraction that describes
it. For example, the office chair that we described earlier is a
thing that has wheels, a seat, and a back, and can roll across the
floor. This is, of course, an abstract definition. We don’t know
what color the chair is, what material it is made of, and so on,
but it gives us some guidelines in determining what is a chair
and what isn’t.

Class = Blueprint In OOP, a class is an abstract definition of something. Classes
are useful because they help us categorize and group things.
They also make it easier to create new things. It’s easy to create a
thing if you know—according to its definition—exactly what is
needed to create it. In many respects, then, a class is like a
blueprint.

Consider a house. If you want to build a house, you don’t go to
the lumberyard, buy a truckload of lumber, nails, and paint, and
then start building. Instead, you draw a blueprint of the house:
without the blueprint, you wouldn’t know how much wood to
buy, what kind of nails you need, and so on. It would be
impossible to construct an entire house without a plan.

The blueprint for a house gives the builder all the necessary
information. It fully describes every part of the house—the
placement of the windows and doors, the number and kinds of
fixtures, the materials used in flooring, the pitch of the roof, and
so on. It is important for the blueprint to be complete: for
example, if no doors are shown in the blueprint, the resulting
house won’t have any either.

The blueprint is essentially the abstract definition for a house. In
OOP terminology, then, the “House” class would be the abstract
definition of a house thing (or object).

Object-Oriented Programming Concepts 3–5

Instantiate
Create an object
from a class.

The blueprint, however, is not a house—you can’t live in the
blueprint. If you wish to occupy the house described in your
abstract definition, you will need to create, or instantiate, an
actual house. When you instantiate a class, you get an object of
that class—for example, instantiating the House class results in
a House object.

Class Versus Object Instantiation is important because a class is not very useful by
itself. It can’t do anything; it merely specifies the characteristics
that an object of a particular class would possess and how the
object would behave if it existed.

The difference between objects and classes is critical: objects
exist in space and time, whereas a class is an abstract definition,
a plan you use to construct those objects. (In software
terminology, a class exists at compile time, whereas an object
does not exist until runtime.)

Applying
Object-Oriented
Thinking
to Software

Let’s apply what we’ve just learned to software. Suppose, for
example, you are designing an information system for a small
business to track employees, customers, inventory, sales
transactions, financial records, and so on.

In this system, there are certain things that all employees have in
common—for example, they all have a name, age, and title. In
addition, the system should be able to print out these personal
details for each employee. By setting up these basic
requirements, we’ve just described the Employee class.

With this class, you can create a whole set of Employee objects,
one for each person in the company. Each Employee has its own
data (for example, John Smith, Cathy Jones, and Rick Robertson)
and the ability to print.

3–6 CA-Visual Objects Getting Started

What Is a Class?

From the one class definition, you can create multiple objects.
This relationship is summarized in the following diagram:

Employee Class Employee object

Compile time Runtime

Code for Name

Age

Title

Print

John Smith, 28, Tester

Employee object

Cathy Jones, 30, Programmer

Employee object

Rick Robertson, 41, Support

Print method(Properties)

(Methods)

Note: Since many objects of the same class can exist
simultaneously, you can assign them to variables to uniquely
identify one object from another. This is how you distinguish,
for example, which Employee object you want to print or which
one’s name you want to know.

Methods As you can see in the previous diagram, a class definition sets
up two things for its objects: the properties it can have and the
actions it can perform.

The code portion of an object—the actions that it can perform—
is defined by methods of its class. In the above example, the
Employee class has just one method, named Print.

Methods define what a class of objects is capable of doing. They
are a lot like functions (they have parameters, declarations,
programming statements, and return values), but they’re
different in that they are defined for a specific class and invoked
for a specific object of that class.

Object-Oriented Programming Concepts 3–7

Properties The code inside the class (that of its methods) can see the data of
the object that it is acting upon. Code outside the class (often
called external code) usually sees only methods. This ability of
the class to hide its data (or instance variables) from external code
is called encapsulation.

So, how does external code get to the data? There are two ways:
through exported instance variables or through special methods,
called access and assign methods (also called virtual variables).
The term property refers to either an exported instance variable
or a virtual variable (in other words, any data visible to code
that is external to the class is a property of that class).

Exported instance variables are sometimes frowned upon
because they violate the encapsulation principle by making the
object’s data directly available to external code.

Virtual variables, on the other hand, allow data to be passed
back and forth between an object and external code without
violating the encapsulation rule. Access methods deliver data
from the inside of an object to the outside, and assign methods
deliver data from the outside of an object to the inside.

State When an object is created at runtime, you can assign values to its
properties and thereby change its state. Thus, all objects of the
same class have the same properties, but the state of one object
may be different from that of another. For example, all
employees have a name, but one may be “Cathy Jones,” while
another is “Rick Robertson.”

Similarly, all objects of the same class share exactly the same
behavior via the methods defined in the class at compile time.
The methods, however, do not change from one object to
another (for example, the code for printing all objects in a class is
identical, regardless of the object’s state).

(The principle of encapsulation is discussed further in the
Additional Strengths of OOP section of this chapter.)

3–8 CA-Visual Objects Getting Started

Inheritance: Superclasses and Subclasses

Inheritance: Superclasses and Subclasses
Not only are classes useful for creating many instances of the
same type of object, but they are also helpful in setting up a
hierarchy of related classes. In this hierarchy, there is an
inheritance relationship among the various levels—each new
level in the hierarchy “inherits from” the previous, higher level.

House Example
Continued

To understand this concept in an abstract sense, let’s return to
the house example for a moment. Imagine the architect who
will design the blueprints for all the houses in a development.
The houses, aside from small differences, are basically
identical. Should the architect draw a set of blueprints for each
house from scratch? No, that would be reinventing the wheel
unnecessarily—all that is really needed is a single, generic
blueprint which contains only the details that will be the same in
all houses. From the one “master” blueprint, the architect can
then design new blueprints to add the details that are unique
for each house.

For example, some of the houses are to have a two-car garage,
others a one-car garage. The architect, then, would design three
blueprints: one master blueprint and two secondary blueprints,
both of which inherit from the master but add their own unique
details (one for a house with a one-car garage and another for a
house with a two-car garage).

Think of the master blueprint as a starting point, and imagine
that it is drawn on a transparency. When new features need to
be added to the base design, the architect simply places another
transparency on top of the original and draws the additions on
it.

When the two transparencies are separated, the first will have
only the generic design. This is the superclass, or parent. When
the two transparencies are together, a house with
embellishments is the one designed. This is the subclass, or child.
It inherits all the characteristics of the parent but defines a more
specific kind of house by adding characteristics of its own.

Object-Oriented Programming Concepts 3–9

Subclassing the
Employee Class

Moving back to our Employee class, suppose you decided to
add a property to store the person’s salary. If the person is
full-time, they are salaried and entitled to benefits; if they are
part-time, they are paid hourly, overtime may need to be
calculated, and benefits are not granted. Therefore, it’s not
really just a simple matter of adding a Salary property to the
Employee class—there are far too many other issues involved.

The best solution, then, is to subclass the Employee class to
define two new classes, named “FullTime” and “PartTime.”
The new subclasses (FullTime and PartTime) inherit everything
from their superclass (Employee)—both their data (name, age,
title) and their methods (Print):

Employee

Name

Age

Title

Print

PartTime

Name

Age

Title

Print

FullTime

Name

Age

Title

Print

Superclass

Subclasses

The subclass, then, can define its own unique data and methods,
as well as modify the behavior of its inherited methods (as
opposed to rewriting the originals).

3–10 CA-Visual Objects Getting Started

Inheritance: Superclasses and Subclasses

For example, you need to have separate code to handle the
salary calculations in the FullTime and PartTime subclasses
because they are not computed in the same way. Thus, objects
created from the FullTime and PartTime classes would still have
all the basic characteristics of an Employee, but each would have
a specialized Salary property, computed differently depending
on the object’s class. Each would also have properties unique
to it, as shown below:

Employee

Name

Age

Title

Print

FullTime

Name

Age

Title

Print

Salary

Benefits

PartTime

Name

Age

Title

Print

Salary

Overtime

Superclass

Subclasses

Note: The interface to these two subclasses is identical. In both
cases, you refer to Salary without knowing or caring how the
underlying class computes the value.

Inheritance is not necessarily only one level deep—you could
potentially go on to create more subclasses and perhaps even
subclasses from those subclasses. If you look at inheritance like
a tree, a subclass inherits not only from its immediate parent but
from all of its ancestors.

Object-Oriented Programming Concepts 3–11

Inheritance, then, is the programming technique by which you
adapt the behavior of a component without changing that
component. Because you can give the component new behavior
without destabilizing it in any way, you achieve safe,
incremental enhancement. You progress from a stable status to
an improved stable status.

A Real-World Example
Let’s return again to the information system for which we
designed the Employee class. What components would you
likely need for this system? Well, a database for sure. In fact,
you’ll probably need several tables to keep track of employees,
customers, inventory, sales transactions, financial records, and
so on.

You might also want a calendar, which will be used to track
shipments and billing dates. Finally, you’ll probably want some
mechanism through which you can generate reports (for
example, total sales per month or a customer mailing list).

We’re already on the path to creating an object-oriented
information system, merely by the fact that we’re thinking of the
components of the system as classes—tables, a calendar, and a
report generator.

The Table Let’s consider a single table first. We need to build the structure
of the table by specifying what fields to include, what their data
type should be, and other details. Next, we need to implement
actions (methods) to make this table operational.

What are the methods we want to apply to a table object? Well,
certainly, we’ll want to add records and delete records. We’ll
also want to search for records, and possibly edit them. Thus,
we’ve already determined four basic methods that will be
available to every table we create.

3–12 CA-Visual Objects Getting Started

A Real-World Example

Let’s pause and take a look at what we’ve done. We designed a
table structure, as well as, several methods that we can use to
provide access to the information in that table. By doing so,
we’ve created our first class definition. Using this abstract
definition of a table as the “master blueprint,” we can now
continue by creating more specific table designs, adding fields
and functionality specific to each table, if necessary.

Tip: In fact, a class that has these methods is supplied with
Visual Objects. It is called DBServer and is located in the
RDD Classes library.

The Calendar Once we’ve designed the table, we can move on to the calendar.
To keep the design simple, the calendar will hold information by
month and day only. We can represent the calendar as an array
of month objects. Each month object has an array of day objects,
and we schedule appointments for these days. Each day has an
array of appointments.

Now that we have the calendar object’s structure defined, what
methods will we possibly need? We’ll definitely need a method
to make an appointment and one to cancel an appointment.
Perhaps a method to mark employees’ vacation days would be
helpful, too.

The Report Generator You’ve probably got the idea by now. When we go to create our
report generator class, we’ll have to create its structure, which
might include the page format and the information source. It
would have at least a single method to send output to the
printer.

Object-Oriented Programming Concepts 3–13

Communicating
Between Objects

You may have noticed that the three classes we’ve imagined
have methods that apply only to themselves. For instance, the
methods that add, delete, edit, and search records in the table
act only upon the table itself, not on the calendar or the report
generator.

We could also, just as easily, have given our objects methods
that allow them to interact with each other. For example, the
table might have methods to send the name of a person who has
a scheduled appointment to the calendar. The calendar would
then have a method to receive that name. The calendar might
need a method to send information to the report generator to
print a daily schedule of appointments. The report generator
might need to access information from the table to create a
report.

These methods, however, would break the encapsulation of the
individual classes. The right way to handle this is for a
controlling object, such as a window, to manage traffic between
the various objects.

3–14 CA-Visual Objects Getting Started

Additional Strengths of OOP

Additional Strengths of OOP
We mentioned earlier that there were other benefits to OOP.
Let’s discuss some of these now.

Encapsulation

Encapsulation refers to the protection of the inside of something
from changes made on the outside and vice versa. It is the
hiding or protecting of data.

Client
The code that uses a
class or the person
who writes that code.

When you develop classes, it is not necessary for the client of
those classes to understand the inner workings of the class. For
example, how exactly the Employee class goes about
implementing its Print method is irrelevant to the client—only
the fact that it exists and works is important. To use a more
simplistic example, the average person probably knows little
about how a television works, and just cares that it turns on
and off, switches channels on command, and presents a
high-quality picture.

From a software perspective, encapsulation plays an important
role. When you design a class, you can hide certain data so that
when an object is instantiated from the class, the data is invisible
to other objects. This allows controlled access to data: the only
way that code outside the class can touch protected data is
through methods or properties. Any external modification to
the data, therefore, is done only with “permission.”

If we consider the television example again, a person really
should not bypass the volume control and manipulate the
volume by touching the television’s internal working parts.
Encapsulation, in the form of the television case, prevents this.
By hiding internal details of objects, and giving access only to
things that should be accessed, encapsulation provides a simple
and safe framework for working with objects and the data they
hold.

Object-Oriented Programming Concepts 3–15

Modularity and Reusability

Standard
Components =
Reusability

When constructing a house, you always use prefabricated
components: girders, door frames, sink units. When
constructing a computer, you assemble prefabricated
integrated circuits, power supplies, and disk drives. Nobody
would consider producing such complex components from
concrete and raw timber, or from silicon and iron ore.

The same should be true for software—yet, when constructing
software applications, often equally complex, the tradition of
using prefabricated components is not as well established. The
proliferation of OOP, however, has started to address this
shortcoming.

Object-orientation extends the developers’ ability to write
modular, reusable code. Objects are essentially packaged code
and data. Bolstered by encapsulation and inheritance, objects
become powerful application building blocks. Future
applications will be easier to create because they will be
programmed by simply assembling component parts—imagine
constructing a personnel package by just bundling together the
payroll system and employee benefits components!

Modularity =
Safe, Incremental
Enhancements

In the long run, however, software construction is probably
going to be more demanding than the construction of a house
or computer, because it continuously requires adjustment and
elaboration.

For this reason, the standard components must be easy to
modify and adapt to new uses and circumstances. The
architecture must allow the continuous rearrangement of
components and addition of new components.

3–16 CA-Visual Objects Getting Started

Additional Strengths of OOP

The tenets of object-orientation hold that proven code rarely
needs to be touched when enhancements or other changes are
necessary. Unless code written in the past is found to be
incorrect—or incompatible with future interface designs—code
need not be modified. Instead, changes are made by creating a
subclass through inheritance and coding only what is new or
different. Only one version of any piece of code, therefore, need
ever exist—code is reusable.

In addition, class definitions can be grouped together in
user-defined libraries. Over time, these libraries can grow to
form powerful application building blocks. Since new
functionality is added via inheritance, source code in the class
library never changes (and consequently, user-defined class
libraries are usually easier to maintain than function libraries).

Because objects are intrinsically modular and reusable,
programmers automatically achieve several benefits:

� There is less code to write and debug. The development
cycle, therefore, is streamlined and more productive.

� The quality of resulting applications is higher, since reused
components are more frequently used and therefore better
tested.

� Reusability decreases maintenance—it is easier to make
changes (both enhancements and corrections) without side
effects.

� Because code is of higher quality and is better tested, and
because development time is streamlined, programmers can
focus more on design, creating applications that are more
sophisticated and robust.

Summary

Hopefully, it’s becoming clear that object-orientation is a good
way to manage GUI applications. OOP is the answer to many of
the programming complexities and challenges presented by GUI
environments. Windows development is the perfect place to put
object-oriented theory into practice.

Object-Oriented Programming Concepts 3–17

It doesn’t stop there, however, applications in general can be
thought of and implemented in object-oriented terms, whether
or not they are GUI, whether or not they utilize databases, or
even if they perform only rudimentary tasks.

3–18 CA-Visual Objects Getting Started

The Visual Objects Libraries

The Visual Objects Libraries
To facilitate object-oriented programming, Visual Objects
includes a set of extensive libraries. These libraries provide very
powerful building blocks for your applications, and offer an
elegant and extensible way of using supporting services. They
integrate well, not only with the programming language but also
with the IDE (for example, the Repository Explorer). Libraries
also provide an extremely effective way of insulating application
code from platform-specific implementation details.

Visual Objects provides the following class and function
libraries:

System Classes OLE Server
RDD Classes Report Classes
SQL Classes System Library
Internet Terminal Lite
Internet Server API Console Classes
OLE Win32 API Library

System Classes This library defines classes that are used by the other system
class libraries (that is, GUI Classes, RDD Classes, SQL Classes,
and Report Classes). Whenever you associate one of these class
libraries with your application, you should also associate System
Classes with it. To use the code generated by the Menu,
DB Server, FieldSpec, SQL Server, and Window Editors, you
must associate this library with your application.

Object-Oriented Programming Concepts 3–19

GUI Classes This library contains over a hundred classes that allow you to
create the objects required for a full-featured GUI. It includes
facilities for creating forms, menus, pushbuttons, scroll bars,
status bars, list boxes, and so on, and also includes simple
shapes and other abstractions associated with a GUI.

Using the GUI Classes library also gives you access to the
Standard Application (which you will explore thoroughly in
“Learning the Basics” later in this guide) and other predefined
application frameworks, robust error and exception handling,
and a wide range of stock objects, such as useful icons, bitmaps,
and colors.

You must associate this library with your applications if you
plan to use code generated by the Window Editor and/or the
Menu Editor.

RDD Classes This library provides an OOP interface to Xbase DBF files using
classes and methods instead of traditional commands and
functions. It must be associated with your applications if you
plan to use code generated by the DB Server Editor.

SQL Classes This library provides an OOP interface to SQL tables using
classes and methods instead of traditional SQL statements, and
must be associated with your applications if you plan to use
code generated by the SQL Editor.

As described earlier, SQL database access is accomplished using
the ODBC protocol. For your convenience, therefore, this library
also contains ODBC API function definitions that can be used to
program directly to the ODBC API.

Note: The ODBC API functions are not specific to Visual
Objects and, therefore, are not included in our documentation.
Refer to the standard ODBC documentation provided by your
ODBC vendor for details about these functions.

3–20 CA-Visual Objects Getting Started

The Visual Objects Libraries

Internet As described earlier in the Visual Objects Features section in the
“Introduction,” the Internet library implements support for
common Internet client services, including the following
protocols: File Transfer Protocol (FTP), Simple Message Transfer
Protocol (SMTP), Post Office Protocol (POP), User Datagram
Protocol (UDP), and Transmission Control Protocol (TCP).

Internet Server API Additionally, the Internet Server API library is a framework for
creating Internet server applications using either the Common
Gateway Interface (CGI) or Microsoft’s Internet Information
Server API (ISAPI).

OLE This library is an extension of the GUI Classes library and
provides client support for Object Linking and Embedding 2.0.
If you use this library, you also have to include the GUI Classes
in the search path of your application.

OLE Server The OLE Server library implements support for creation of OLE
Automation Server applications, ActiveX controls, and Active
Server Page (ASP) components.

Report Classes This library provides an OOP interface to the CA-Report Writer
and the CA-Report Viewer, and must be associated with your
applications if you plan to use code generated by the Report
Editor.

System Library This library provides basic system function support. This library
also provides support for traditional Xbase database functions
like DBCreate() and EOF(). It is automatically associated with
every Visual Objects application.

Terminal Lite This library is a limited set of compatibility functions for
traditional Xbase screen I/O techniques. You should associate
this library with your applications only if you want to display
your output for debugging or logging purposes.

Console Classes As described earlier, the Console Classes library is an alternative
to the Terminal Lite library for character-based debug/logging
output. While the Terminal Lite library emulates character
mode in a GUI window, the Console Classes library utilizes the
Win32 native console application support.

Object-Oriented Programming Concepts 3–21

Win32 API Library This library contains Win32 API function, constant, and
structure definitions. You should associate this library with
your applications only if you plan to exploit low-level, system
programming.

Note: The Win32 API functions are not specific to Visual
Objects and, therefore, are not included in our documentation.
Refer to your Microsoft Win32 Software Development Kit for details
about these functions. If you have been using the Windows API
with your CA-Visual Objects 1.0 or 2.0 applications, you might
encounter certain incompatibilities in the API. For differences in
the API, see the Win32 SDK.

What’s Next
To gain a better understanding of the features available to you,
the next chapter points out some of the various features of the
Visual Objects development environment.

3–22 CA-Visual Objects Getting Started

Chapter

4 An Overview of the IDE

 This chapter presents an overview of some of the features of
Visual Objects. Its purpose is to help you gain both an
understanding of what features are available to you, as well as a
familiarity with the basics of working in Visual Objects, so that
you can go on to complete the sample application introduced in
the next chapter.

 Note: This chapter only touches upon some of the tools
provided by Visual Objects. For complete details, please refer to
the IDE User Guide and the online help.

Repository-Based Development
 Before you start to use Visual Objects, you need to understand

the implications of moving from file-based development systems
to a repository-based development system.

No Need to Work
with Files

First of all, you do not have to deal with files when working
with Visual Objects. Instead of an application that is
comprised of one or more files (PRG, CH, and so on), an
application now consists of one or more modules. In addition,
all the items that were in your files—such as functions and
procedures—are now referred to as entities. All your
applications now reside in a project. Each project consists of a
repository that contains all your applications, DLLs, libraries,
modules, and entities.

An Overview of the IDE 4–1

Repository-Based Development

In Visual Objects, all of these things—applications, modules, and
entities—are stored in a multi-tiered repository. While they are
all still manageable, editable pieces of the application, they are
no longer file-based—the repository holds them all. (For
example, if you import source code from another application
into the repository, there is seldom a need to work with external
files of any kind once the files are imported.)

Note: Modules in the repository can be linked to external files if
you prefer to maintain a file-based application. Visual Objects
provides File Import and Export commands that you can use for
maintaining backup files.

Visual Objects multi-tiered repository is broken into two parts:
the System part and the User part. The System part contains all
information specific to the Visual Objects system. This portion
of the repository is read-only and cannot be affected by the
developer. The User part can contain an unlimited amount of
user projects, available to be stored either locally or on a
network. The user projects inherit their attributes from the
System part, creating a complete repository.

An Internal,
Automated
MAKE Facility

The repository manages all of the pieces of an application for
you. It automatically maintains the relationships between the
various entities of an application. Each time you build an
application, the repository “knows” what to compile based on
changes that you have made and builds the application in the
most efficient way. Such automation eliminates the need for
make files and compiler and linker script files.

4–2 Visual Objects Getting Started

Repository-Based Development

Applications

Modules

Entities

Projects

The repository is based on a hierarchical, object-oriented
model. In Visual Objects, projects contain applications (like
“Order Entry”) and libraries (like the GUI Classes library) that
consist of modules (such as “Standard Shell”), which in turn
consist of entities (such as “CLASS Standard Shell Window”
and “METHOD StandardShellWindow:Init”). The highest
level in the hierarchy, naturally, is the project. A project
displays the applications defined in the repository. The Visual
Objects repository system allows the users to create multiple
repositories that can be used on different systems.

The applications contained within a project can be defined as one
of three types: executable, library, or DLL. Specifically, an
executable (EXE) is exportable as an executable file and a DLL as a
dynamic shareable file, whereas a library is used only at compile
time and is included in an EXE or DLL file. A listing of libraries
included in the application can be found in the Application
Options dialog box. You can also add and remove libraries from
the application using this dialog box.

Modules, which form the third level in the hierarchy, are in many
ways comparable to traditional source files (for example, PRG
files). They contain a group of logically related parts of the
application, and may be used to limit the visibility of variables,
functions, classes, and so on, defined in the module.

Similarly, just as a typical PRG file contains function and
procedure declarations, modules in Visual Objects contain
entities. Entities form the fourth level in the hierarchy. An entity
is any part of your application that has a name and can be
edited. Some of the available entity types are:

■ forms ■ procedures ■ classes ■ globals
■ menus ■ functions ■ methods ■ constants
■ reports ■ resources ■ structures

An Overview of the IDE 4–3

The IDE Tools
 Visual Objects features an integrated development environment

(IDE) that provides you with a flexible, intuitive, and powerful
environment for creating applications.

 The IDE provides a rich set of tools that can be used to create
sophisticated GUI applications. Like a hammer or ruler, a tool
allows you to create things. For example, there is a Repository
Explorer which lets you organize and view your data, and editors
which allow you to create forms, menus, source code, databases,
reports, and icons.

The Repository
Explorer

In Visual Objects, projects consist of applications, applications
consist of modules, and modules consist of entities. When you
start Visual Objects, the Repository Explorer is automatically
loaded and visually represents the projects, applications,
modules, and entities.

 Selecting a project from the Project Selection dialog displays the
applications defined for it, double-clicking on an application
displays the modules defined for that application.
Double-clicking on a module displays the entities defined for
that module.

 You can control the overall display of the Repository Explorer
by using the Group By Module, Group By Type, and Group By
Class toolbar buttons. Note that you can customize the
Repository Explorer’s right pane, or list view pane, by using the
Large Icons, Small Icons, List, and Details toolbar buttons. You
can also use the View Options menu command to limit the
display by name and type. (See Customizing the Repository
Explorer section of the “Using the Repository Explorer” chapter
in the IDE User Guide for details.)

4–4 Visual Objects Getting Started

The IDE Tools

Visual Editors Many of the editors in Visual Objects are visual and, in almost all
cases, the flexibility and ease-of-use provided by the visual
editors can help you work more efficiently. Their
point-and-click, drag-and-drop design approach and WYSIWYG
environment allow you to develop an application visually,
thereby improving the quality of the application and reducing
the total development time.

Instead of working directly in programs with the Visual Objects
language, you can lay out the visual aspects of the application
and much of its functionality. This provides ongoing evaluation
of the application as it is created, as well as meaningful feedback
about the design.

For example, to add controls (like check boxes or list boxes) to a
form using the Window Editor, you simply click on an icon in a
tool palette and click in the form to place it. You can then
manipulate and define the control as desired (for example,
resize, change colors and fonts, or add code to handle events).
The Window Editor also provides a Test Mode option so that
you can see what your form looks like at runtime.

Likewise, when designing a menu in the Menu Editor, it is
displayed in a partially operational “preview” menu bar, so you
can view what your menus look like as you create them. This
preview area is continually updated as you work, providing
immediate visual feedback.

Creating an application in a visual fashion improves the quality
of the application and reduces the total development time, as it
leads to a better definition of what is needed and thereby
provides for an application that best meets the user’s needs.

Generating Code When you are finished designing in any of these editors and
have saved your work, Visual Objects generates powerful and
straightforward object-oriented code based on the underlying
class libraries.

An Overview of the IDE 4–5

The IDE Tools

For example, creating a form in the Window Editor will generate
a subclass of the Window class. The generated code is not only
efficient and powerful; it is clean and maintainable and forms a
solid foundation for the future evolution of the application.

A Complete
Development
Environment

Of course, Visual Objects provides a host of other
complementary tools to complete the development
environment, including a source code editor, a compiler, and a
debugger.

The Visual Objects IDE is designed to provide a productive
framework for developing all kinds of applications—including
mission-critical business systems—and is specifically designed
to support the iterative development paradigm.

All development tools provided in Visual Objects are closely
integrated with the repository. In fact, all aspects of working
with application components—looking at them, analyzing their
relationships, and editing them—are done from the repository.
This ensures efficient development and protects the integrity of
your applications.

The Repository Explorer

The Repository Explorer provides a convenient and organized
way to view the data that is currently stored in your repository.
In Visual Objects, you can view:

■ Projects

■ Applications, libraries, and DLLs

■ Modules

■ Entities

■ Classes

■ Errors

4–6 Visual Objects Getting Started

The IDE Tools

The Repository Explorer in Visual Objects can be customized to
display a particular subset of data. For example, by clicking on
the Group By Class toolbar button in the Repository Explorer
classes are displayed in a collapsible/expandable tree structure
that lets you determine what information to display.

You can also open multiple Repository Explorers that show
different views of an application.

For example, the first Repository Explorer can show an
application grouped by module, the second can show the same
application grouped by type in order to display the applications
entities, and the third view can show the same application
grouped by class:

In addition, the close integration of the Repository Explorer with
the repository provides easy access to the various editors. For
example, double-clicking on a source code entity (such as a
GLOBAL or a METHOD) in the Repository Explorer’s list view
pane loads the code for that entity in the Source Code Editor,
while double-clicking on a window entity loads the form
definition in the Window Editor.

An Overview of the IDE 4–7

The IDE Tools

The Repository Explorer, therefore, serves a variety of purposes.
The views that it provides gives you an overall picture of the
data that is stored in your repository. The Repository Explorer
also allows you to manipulate that data—for example, you can
rename an application, move a module to another application.
You can even move an application to a different project by using
two instances of Visual Objects looking at different projects, all
with the use of the Edit menu cut/copy and paste options.
Finally, it provides access to the various Visual Objects editors.

Managing Projects

Note: As discussed earlier in the introductory chapter, Visual
Objects now provides version control for managing your
applications. For detailed information, see Using the Source
Code Control Interface in the online help.

In Visual Objects you can create and add multiple projects that
access separate repositories. You may also rename or delete a
project from the Repository Explorer. All the projects that are
available to you can be managed through the project catalog.
When a new project is created, it is automatically added to your
catalog. You can also add a new project as long as it is not open
in another instance of Visual Objects by you or another user.

You can remove a project from your catalog by pressing the
Remove button. This removes the project from the Project
Selection dialog, but the directory and contents of the repository
are not deleted. You can, however, delete the project from the
Project Selection dialog by clicking the Delete button and this
will remove the directory with contents as well as taking it out
of your list.

From the root level of the Repository Explorer, you can use the
File menu commands, New Project, Open Project and Select
Project. To remove or delete a project from your list, select the
File/Select Project option to open the Project Selection dialog.
From here you are able to perform the required operation but
you can not remove/delete a project that you are currently
working in or have open in another instance of Visual Objects.

4–8 Visual Objects Getting Started

The IDE Tools

Browsing Applications and Modules

As you have already learned, in the Visual Objects hierarchy,
projects consist of applications; applications are comprised of
modules, which contain entities. The Repository Explorer tree
structure follows this top-down hierarchy.

The Repository Explorer allows you to view and use multiple
projects but only one can be open in an instance of Visual
Objects. For this reason, you are able to start Visual Objects
multiple times with a different project in each.

The Repository Explorer allows you to view and maintain what
is currently stored in the repository. The second level of the tree
structure represents the project that is currently available.
Under the project level is the application level. This level
represents all the executables, libraries, or DLLs that are stored
in your repository.

The module level is displayed under the application, library, or
DLL level. All modules that are in the application are displayed
here. By clicking on the individual modules, a list of all entities
will be displayed in the Repository Explorer’s list view pane.

Initially, the Repository Explorer displays all of the libraries
supplied by Visual Objects. As you start to add to the
repository, creating your own executables, libraries, and DLLs,
the Repository Explorer will display them all.

You can customize the Repository Explorer as you work. You
can change the Repository Explorer’s initial display in several
ways: specifying the size of the icons used, displaying data in
list or detailed format, and restricting the display to a specified
application type(s) and/or name(s). This is in addition to
selecting module, type, or class view by clicking the Group By
Module, Group By Type, or Group By Class toolbar button,
respectively. See Customizing the Repository Explorer section
in the “Using the Repository Explorer” chapter of the IDE User
Guide.

An Overview of the IDE 4–9

The IDE Tools

Viewing Entities at the Module Level

Visual Objects allows you to view only the entities defined for
a specific module in an application. Clicking the Group By
Module toolbar button displays the modules of an application.
This is the default setting in the Repository Explorer. To
expand this view, click on the application or click on the + icon
to the left of the application. All of the modules defined for
this application are displayed in the Repository Explorer tree:

Note: The Application shown is what would be displayed if a
Standard MDI application were created. We will cover creating
applications later in this guide.

4–10 Visual Objects Getting Started

The IDE Tools

Clicking on one of the modules in your application will display
its entities in the list view pane of the Repository Explorer. For
example, clicking on the Standard Menus module displays the
entities for this module in the right, or list view, pane:

Notice that the entities are displayed sorted by entity name in
alphabetical order. You can, however, sort the entities by other
criteria—such as vitality or entity type—simply by clicking on
the appropriate column header in the list view pane. Clicking
on the column heading again will change the order to
ascending/descending.

Double-clicking on a binary entity at the entity level starts an
editor. For example, double-clicking on a form entity invokes the
Window Editor, while double-clicking on a function entity
activates the Source Code Editor.

An Overview of the IDE 4–11

The IDE Tools

Viewing Entities at the Entity Level

To view all entities within an application, choose the Group By
Type toolbar button. For example, choosing this toolbar button
for the Order Entry library would display the following:

Note that the items in this view are displayed in groups that
represent the type of entity within the application.

This can be useful when you are trying an entity in a large
system. For example, if you needed to find a method of the
StandardShell class, you could easily click on the Method folder
in the Tree View to display a list of all of the methods and then
pick from there.

4–12 Visual Objects Getting Started

The IDE Tools

If you click on the Method module , the Repository Explorer
displays all the entities and details in the list view pane:

Again these entities are listed in alphabetical order and the class
that they belong to is listed in the second column. A single click
on the Class column will change this into displaying in
alphabetical order grouped by class.

Note: You may also use the View menu commands to collapse
and expand branches. See the Browsing Classes section in the
“Using the Repository Explorer” chapter of the IDE User Guide.

An Overview of the IDE 4–13

The IDE Tools

Browsing Classes

Visual Objects allows you to view all classes associated with an
application. This can be done by clicking on the Group By
Class toolbar button and then expanding the branch:

Notice that when grouping by class it is possible to get a single
group with the title no classes found. This is because the classes
are linked to libraries and will need to be compiled before they
can be displayed as they are shown above.

While clicking on any of the groups in the Tree View will chow
you the relevant code in the current application, it is also
possible to extend that view to include all of the library code
supplied with Visual Objects.

4–14 Visual Objects Getting Started

The IDE Tools

In order to extend the view of these classes, choose the
View/Include Libraries menu command. The Repository
Explorer now displays the classes associated with this
application. Clicking on the VObject group will display details
regarding the class entities:

However, as you can see, this view is only showing the details of
the selected class and there is very little to show in this view but,
as you will find out later, the VObject class is one of the most
used classes in Visual Objects. This is because almost everything
inherits from this class.

In order to extend the view to be of more use, turn off the
Include Libraries option by choosing View/Include Libraries
from the menu.

An Overview of the IDE 4–15

The IDE Tools

Click on the StandardShellWindow group in the Tree View:

Now choose the View/Include Inherited menu command:

4–16 Visual Objects Getting Started

The IDE Tools

The Repository Explorer now displays the properties and
methods, not only of the class but of all the classes that it inherits
from as well.

NOTE: It is of special importance to note that there are many
methods that start with __ (a double underscore). These methods
are considered to be internal and you should not need to use
them. As such you will not find them documented anywhere.
They are subject to change at any time and without any
guarantee of backward compatibility.

An Overview of the IDE 4–17

The IDE Tools

Error Browser

During the development cycle, compiling (or building) an
application often results in errors. To help you locate and
correct errors and warnings quickly and efficiently, Visual
Objects provides an Error Browser.

The Vitality column of the Repository Explorer displays the
compilation status of an application, module, and entity. There
are three compilation states: Compiled, Uncompiled, and
Non-Compilable. Compiled means that all entities were
compiled with no errors; Uncompiled means that the entity
needs to be compiled or has been compiled and that there are
errors; and Non-Compilable means that the entity does not
require compilation, (for example, any binary entity). If you
have customized your Repository Explorer so that the Vitality
column is not displayed, you can use the applications icons to
determine the entity status:

Icon Status

Compiled modules

Uncompiled modules

Compiled entity

Uncompiled entity

Non-Compilable entities represent binary entities.
These icons will be different for the different binary
entities.

Therefore, when you build an application and a module icon is
marked by a yellow dot, this lets you know that the module
contains one or more entities that have errors which will be
marked with a red dot.

4–18 Visual Objects Getting Started

The IDE Tools

To quickly view and go to these errors, choose the Tools Error
Browser menu command. Choosing this command lists all the
entities in the application that have errors or warnings. For
example:

In the Error Browser, LED-style icons denote errors and
warnings. An error is indicated by a red circle with an “E”
inside it. Similarly, warnings and their corresponding severity
levels are indicated as follows:

Icon Color Severity
Indicator

Description

Dark yellow circle “1” Level 1 warning (most
critical)

Yellow circle “2” Level 2 warning

Light yellow circle “3” Level 3 warning

White circle “4” Level 4 warning (least critical)

Similar to the Repository Explorer, the Error Browser displays
the entities in a collapsible/expandable tree structure. If you
double-click on an error, you are brought directly to the line in
the source code that contains the error.

An Overview of the IDE 4–19

The IDE Tools

The Editors

Visual Objects provides the following types of editors:

Editor Creates

Source Code Editor Source code entities, like functions,
procedures, globals, etc.

Data Server Editors Data server entities, as subclasses of the
RDD, SQLSelect, and FieldSpec classes.

Window Editor Window entities (like data forms and
dialog boxes), as subclasses of the various
Window classes.

Menu Editor Menu entities (like menus and
accelerators), as subclasses of the Menu
and Accelerator classes.

Report Editor Report entities, as subclasses of the
ReportQueue class.

Image Editor Icon, bitmap, and cursor entities (in the
form of .ICO, .BMP, and .CUR files,
respectively).

4–20 Visual Objects Getting Started

The IDE Tools

These editors can be used to create all the components of a
sophisticated GUI application. All editors can be started by
choosing a command from the Tools menu:

Alternatively, you can also start an editor by clicking the New
Entity toolbar button in any module

and choosing an editor from a local pop-up menu:

An Overview of the IDE 4–21

The IDE Tools

Note: For detailed information on how to use the visual editors,
see the IDE Tools section of the “Working in the Desktop”
chapter of the IDE User Guide.

Source Code Editor

Note: For detailed information about the Source Code Editor’s
new features—such as using parameter tips, adding bookmarks,
and displaying its search history, all discussed earlier—see the
relevant topic in the online help.

The Source Code Editor provides a powerful environment for
writing and editing code. For example, you can cut, copy, paste,
delete, search for, and replace text, as well as undo and redo
editing actions, using standard Windows techniques.

You can also fill in an incomplete function or method call with
its prototype by right-clicking after the first parenthesis or by
choosing the Edit Insert Prototype menu command. An Expand
Prototype pop-up menu will appear; if you click on it, the
prototype is inserted—this is a useful feature if you have simply
forgotten the correct syntax. For example, here’s the Visual
Objects-inserted prototype for the SendMessage() function:

Right-click here to insert prototype

Prototype inserted after clicking on Expand Prototype pop-up menu
command

4–22 Visual Objects Getting Started

The IDE Tools

If you want to view a prototype without inserting the prototype,
just simply right-click on the function or method and a GOTO
pop-up menu will appear. This pop-up contains the prototype
and definition of an entity. If clicked on, it will bring you to the
existing code in the application. For example, if you click on the
StandardShellWindow class the following will display:

The Source Code Editor also provides visual feedback by
continually parsing each keystroke as you enter source code (or
import or paste text) to color-code text based on its structure.
Keywords, literals, and comments, for example, are all displayed
in different colors, while each entity is separated from the next
by a horizontal marker.

Additionally, the Source Code Editor provides auto indentation,
source code translation from OEM to ANSI, automatic method
insertion, case synchronization, and also allows you to set
keyword case, tab stops, and preset breakpoints to be used in the
debugger. See the Setting System-Wide Options in the
“Working in the Desktop” section of the IDE User Guide.

The collapse/expand icons, available for every entity loaded,
allow you to collapse entities that you are not currently editing
to provide a cleaner view of the source code and to expand them
again when you need to work with them.

An Overview of the IDE 4–23

The IDE Tools

Data Server Editors

One of the primary tasks of any GUI database application is to
enter, modify, view, and utilize the information stored in
databases. This is facilitated by the use of ancillary information,
like index files in the Xbase model and WHERE and ORDER BY
clauses in the SQL model.

The DB Server and
SQL Editors

Visual Objects provides a set of editors—the DB Server Editor
and the SQL Editor—that let you create and modify data servers.
A data server is a high-level, abstract entity designed to give
you a consistent object-oriented interface for your database.
The DB Server Editor creates data servers based on the
traditional Xbase model of a database file, while the SQL Editor
creates data servers based on the SQL model of a table.

With both the DB Server and SQL Editors, you can import an
existing database or table structure and generate a default set of
field specifications (explained below in The FieldSpec Editor
section) that you can optionally modify. The DB Server Editor
also lets you generate a database file (and index files) from the
data server definition using the File Export command.

Note: Visual Objects does not have the capability of creating
SQL tables.

Using data servers offers you some significant benefits. For
example, many of the properties that you define for a data
server and its field specifications are designed to be used by data
aware windows that you create using the Window Editor. Thus,
you need only define the attributes for a data server once, and
they will be automatically inherited and used by any data
window that is linked to that data server.

4–24 Visual Objects Getting Started

The IDE Tools

Similarly, changes to a data server (such as the validation rules
or picture formats for one or more fields) need only be made in
one place, the data server itself. Resources that use the data
server will automatically inherit those changes.

Using a data server also provides an integrated view of all the
pieces of information related to it. Without this comprehensive
entity, you would have to create and maintain the various pieces
(tables, index files, relations, and field specifications)
independently. Additionally, creating data servers for your
database tables allows them to be easily viewed and
manipulated within the IDE (for example, by using the Group
By Class and Group By Type views of the Repository Explorer).

The DBServer Editor has support for the .NTX, .CDX and .MDX
indexing formats and supports Character, Numeric, Logic, Date,
Memo, and OLE field support.

The FieldSpec Editor

In many cases, the different data servers your application uses
contain similar, if not identical, fields (for example, all zip code
fields are typically the same, regardless of where they are used).
You can either define the properties of these common fields
(such as validation and formatting rules) each time you create a
new data server, or you can create a single field specification
and reuse it in each data server that needs it.

A field specification created in the FieldSpec Editor is essentially a
set of properties that are related to a field but are independent of
any particular data server. Thus, multiple data servers can
access the same property values for common fields. If you
create a Salary field specification, you can simply reuse its
properties when creating an EmpSalary field in a data server for
an Employee database. Additionally, if you change a field
specification, the change will automatically propagate to all
appropriate places.

An Overview of the IDE 4–25

The IDE Tools

Window Editor

The Window Editor is used for the interactive design of the
various windows of your application. These windows are
generated by created forms in the Window Editor. When
working in the Window Editor, the windows are referred to as
forms and a binary form entity is created in the Repository
Explorer.

Window Types You can create several types of windows in the Window Editor,
based on subclasses of the standard GUI Classes Window class.
For example, you can create MDI shell windows, data windows,
data dialogs, and dialog boxes.

You can also create an OLE data window which was added to
assist in the support for the OLE 2.0 standard. For more detailed
information, refer to the online help system.

Tool Palette To design these windows, the Window Editor features a floating
tool palette. To place a control on a form (such as a push button,
list box, or scroll bar), just click a button in the tool palette and
click in the form.

You can then go on to define properties for your forms and the
various controls you place on them (for example, you may want
to specify the text that should appear in the status bar when a
form or control is selected, or an ID for use in a context-sensitive
help system).

Controls and Actions One important property of certain controls is an event name.
This is because in Windows applications, certain types of
controls initiate actions, or events. For example, when the user
clicks the OK button in a dialog box, the program processes the
information entered in the dialog box and closes it.

The Window Editor makes it easy for you to associate actions
with these types of controls by allowing you to specify an event
name as a property. You have the option of using any method,
form, or report that is visible to your application as an event
name and can even specify source code for a customized event
name method from within the Window Editor.

4–26 Visual Objects Getting Started

The IDE Tools

There are many different types of controls that you can define in
the Window Editor, but before going on to describe them, a few
words about data forms are in order.

Data-Aware Windows The integration of the various tools in the Visual Objects IDE
provides some powerful benefits, one of which is the ability to
create data windows. Data windows are data-aware because they
“know” about the data server(s) upon which they are intended
to operate.

Note: The OLE data window type is also data-aware, as are all
controls that are descendants of the TextControl class. For more
information, refer to the TextControl Class help topic.

A data window knows about a data server by a link that you
establish between it and one or more data servers. Once a data
window and a data server are linked, you can actually link
individual controls in the window (such as edit controls and
check boxes) with fields in the data server.

When you link a window control to a field, you are actually
linking it with the field specification associated with that field—
the control, therefore, automatically inherits and uses all of the
field specification’s properties (for example, its validation and
formatting rules).

By their very nature, data windows are capable of interacting
intelligently with data servers. For example, data windows can
easily display the contents of a data server and have
preprogrammed methods for moving among the records and
manipulating the data in a data server (Go to Top and Delete
Record).

Not only are data windows powerful additions to your
applications, they are also easy to create. Using the Window
Editor’s Auto Layout feature, you can quickly link a data form
with one or two data servers, creating either a single-server or
master-detail data form.

An Overview of the IDE 4–27

The IDE Tools

When you use Auto Layout, Visual Objects automatically creates
a fixed text caption and edit control for every available field in
the associated data server(s). (See Types of Controls later in this
section for details about these controls.)

Here is an example of a data-aware form created using the Auto
Layout feature:

Captions and edit controls
created for each field Tool Palette

Properties window

Data Dialog Windows In addition to Data-Aware windows you can also create a data
dialog window. A data dialog window is a window that
combines features from both data windows and dialog
windows. This combination allows the creation of modal data-
aware windows.

4–28 Visual Objects Getting Started

The IDE Tools

Types of Controls The tool palette in the Window Editor contains a host of buttons
representing different controls. (If you prefer, the Window
Editor also features an Edit Select from Palette menu command,
which allows you to place controls by choosing commands from
a menu.)

Note: For detailed information about the new IP address,
month calendar, date time picker, and ComboBoxEx common
controls, as well as the new data list view custom control, see the
online help.

The following is an overview of some of the various types of
controls you can create (they are listed in alphabetical order).

Animation controls are used to display silent Audio Visual
Interleaved (AVI) clips. These controls are useful when a
lengthy operation is being performed. They can be displayed
until the operation is completed.

Check boxes indicate a set of options that are either on or off.
If more than one check box is present on a window, the user can
select as many as are applicable. The state of a check box is
indicated in the box to its left: if there is a in the box, it is
selected; otherwise, it is not.

You might use a check box on a data window to indicate a
logical field. Checking the box would indicate a value of TRUE,
while unchecking it would indicate a value of FALSE. For
example:

Combo boxes are list boxes with a single-line edit control
attached at the top. The user can either type a value directly into
the edit control, or click on the Down arrow button to the right
to open a list box from which to make a selection. The selection
is used to fill in the edit control, which can then be edited.

An Overview of the IDE 4–29

The IDE Tools

In a data window, you can use a combo box instead of a list box
when the field value has more possibilities than you care to list.
By placing the most commonly used values in the associated list
box, you give the user a quick way to make a selection, without
removing the flexibility of entering values that are not listed, as
shown here:

Edit controls present a blank area on a window into which the
user can enter data from the keyboard. They come in two
varieties, as shown below: single-line for entering one line of
text, and multi-line for entering several. The user can edit the
text in an edit control with the normal mouse and menu
commands.

Edit controls are probably the most commonly used controls on
data windows and are often used to represent fields into which
the user may type almost any value.

Fixed icons are graphic pictures that can be placed anywhere in
a window. They are created with any graphics application,
including the Visual Objects Image Editor. An example of a
fixed icon is the one displayed on the Confirm dialog boxes:

Fixed text displays a caption or label anywhere within a
window. A common use of this type of control is to create a
caption for a single-line edit control, a feature that is utilized by
the Window Editor’s Auto Layout feature. For example:

4–30 Visual Objects Getting Started

The IDE Tools

Group boxes visually indicate a set of related controls. They
provide a caption to describe the controls, but serve no other
purpose. They are most often used to display a group of related
check boxes. On a dialog box, for example, you might give the
user the option of choosing several styles for displaying text:

Horizontal sliders, or trackbars, are used to select a specific value
or set of consecutive values in a range of records or options. It
typically includes a slider, or thumb, and tick marks that indicate
the incremental values in the range. For example, Windows
provides a slider control for setting the double-click speed of
your mouse.

Thumb

Tick marks

Horizontal Spinner controls consist of a pair of Left and Right
arrow buttons that are used to decrement or increment a value,
respectively.

HotKey edit controls enable the end user to select a valid key
combination as a shortcut for performing an operation or for
accessing another form.

An Overview of the IDE 4–31

The IDE Tools

List boxes display a list of choices to the user and allow the user
to scroll through them and select one. In a dialog box, you
might use a list box to allow the user to select a file name. On a
data window, you might use a list box to display all possible
values for a particular field. For example:

List views allow the user to view, add, delete, and arrange a list
of items wherein each item consists of an icon and a label. For
example, the right pane of the Repository Explorer is a list view:

The contents of a list view control can be displayed in one of
four view types: Icons, Small Icons, List, and Report. Other
options allow the end user to edit labels, scroll items, and select
more than one item at a time.

OLE object controls (OCX) allow you to seamlessly embed
other applications into the application you are currently
designing. For example, if you were creating a financial
application like our Order Entry sample application and you
wanted to add spreadsheet capability to it, you could do so by
inserting Microsoft Excel as an OLE object control.

The Window Editor is a full blown OLE container that allows
the setting up of the initial state of OLE objects (how OLE objects
will look when brought up at runtime). The Window Editor
supports in-place and out-of-place editing of OLE objects.

4–32 Visual Objects Getting Started

The IDE Tools

Note: Some OLE server applications might not support in-place
editing. In this case embedded objects will be edited out-of-
place. Due to the different behavior of the servers, you may
receive different behaviors on editing different types of
embedded objects. It is an OLE convention that editing of linked
objects is always done out-of-place. The Window Editor is also
an OLE control (OCX) container.

Note: You can also link OLE objects to your applications. For
more detailed information about linking and embedding OLE
objects and OCX controls, see the Linking and Embedding OLE
Objects and Controls section in the “Using the Window Editor”
chapter of the IDE User Guide and the OLE 2.0 Features section
in the “Object Linking and Embedding” chapter of the
Programmer’s Guide.

Progress bars are used to visually indicate the progress of
lengthy tasks, such as installation and compilation operations.
Every progress bar has two features: a range and a current
position. The range denotes the length of the task from start to
completion, and the current position indicates the progress
made. The system uses the range and current position to
calculate progress as a percentage and colors a corresponding
percentage of the progress bar.

Push buttons react when the user chooses them by generating
an event (see Controls and Actions earlier in this section). Some
examples of push buttons are the standard OK and Cancel push
buttons, shown below, used to close a dialog box or a Commit
push button on a data window that commits the edits you have
made.

Radio buttons behave like check boxes unless contained in a
radio button group box (described below), but their appearance
is different. A selected radio button contains a black dot, as
shown in the next illustration.

An Overview of the IDE 4–33

The IDE Tools

Radio button group boxes visually indicate a group of radio
buttons. Like a regular group box, they provide a descriptive
caption for the controls they contain, but they have another
special purpose—only one of the radio buttons within a radio
button group box can be selected at any time. When the user
chooses a new radio button in the group box, the previously
selected one is turned off , or deselected.

Each radio button group box behaves independently. In other
words, you can place several groups of radio buttons on the
same window, and the user can select exactly one radio button
in each group box.

Radio button group boxes let you use radio buttons to present a
set of choices to the user. For example, you might use a radio
button group box on a data window to fill in a field that can only
take on a limited number of values, such as a Temperature field
that must be either “Cold,” “Warm,” or “Hot”:

Rich edit controls allow the end user to enter, edit, delete,
format, and print straight text. You can set tabs, use indentation,
align and number text; and for characters, you can specify font,
size, text and background color, italics, and so on.

In addition to character and paragraph formatting, you can also
embed OLE objects in rich edit controls. For example:

4–34 Visual Objects Getting Started

The IDE Tools

Scroll bars display a gauge that the user can adjust using a
scroll box or scroll arrows. They come in two varieties:
horizontal and vertical. You could use a scroll bar on a data
window to graphically represent a numeric field. For example:

Note: The scroll bars discussed here, although visually and
functionally identical, do not apply to the windows themselves,
but rather to the data that the window displays. Window scroll
bars (and scroll bars in list boxes and combo boxes) are handled
dynamically in Visual Objects applications, depending on their
current size and the amount of data that needs to be displayed.

Sub-data windows are simply data windows that you place on
other data windows as controls (they are also referred to as
subforms). Typically you would use a sub-data window to
show a master-detail relationship between two related data
servers. (We will create such a data window later as part of the
tutorial in the next chapter, “Learning the Basics.”)

Tab controls are used to present data or a series of choices in a
multiple-page format. It consists of one or more tabbed pages
that resemble file folders. When the end user clicks on one of
the tabs, the corresponding page moves to the forefront and
allows access to its data and controls.

An Overview of the IDE 4–35

The IDE Tools

For example, the various tab pages in the Applications Options
dialog box are tab controls:

Button-style tabs

Note: This dialog box has been updated in this version of
Visual Objects. For more detailed information, see the New
Application Options section in the introductory chapter and the
online help.

Tree view controls present the end user with a hierarchical list
of items in a tree structure that can be expanded or collapsed.
Each item in the tree consists of a label with an optional icon and
may have an associated list of subitems. For example, the left
pane of the Repository Explorer is a tree view that lists projects,
applications, modules, and entities in a top-down hierarchy:

The contents of a tree view control can be displayed with
buttons that expand and collapse subitems (also called child
items) and lines that link subitems to their parent items and/or
to the hierarchy’s root level. Other options allow the end user to
select more than one item at a time and to edit item labels.

List view controls present the end user with a non-hierarchical
list of items. For example, the right hand pane of the Repository
Explorer is a list view that represents the items contained within
the item selected in the right hand Tree view control.

4–36 Visual Objects Getting Started

The IDE Tools

Vertical sliders, or trackbars, are used to select a specific value or
set of consecutive values in a range of records or options. It
typically includes a slider, or thumb, and tick marks that indicate
the incremental values in the range.

Vertical spinners—sometimes called spin controls or Up-Down
controls—consist of a pair of Up and Down arrow buttons that
are used to increment or decrement a value, respectively. For
example, the Copies field on a standard Print dialog box is
usually a spinner control:

Spinner

Companion control

Note: For detailed information about the properties and styles
of these controls, see the Specifying Control Properties and Style
Settings section of the “Using the Window Editor” chapter in the
IDE User Guide. Also, refer to the Properties Window help topic
for the relevant control.

An Overview of the IDE 4–37

The IDE Tools

Menu Editor

The Menu Editor, shown below, provides a powerful yet easy
way to create menus and toolbars for your applications.

Auto Layout First of all, like the Window Editor, the Menu Editor features an
Auto Layout feature. In the Menu Editor, however, Auto Layout
is used to add one or more predefined, standard menus to an
application. For example, at the touch of a button, you can add
File, Edit, View, Window, and Help menus to your application.
In addition, each of these predefined menus (like File) contains a
set of default menu items (for example, New, Open, and Save),
for which default properties are already supplied, including
event names and toolbar buttons.

For example, the following shows the properties initially set for
the predefined File Open menu command:

File Open
menu command

Properties initially defined for the File Open menu command

Note: See the Menu Properties Window and Menu Item
Properties Window topics in the online help for new and
updated menu and menu item properties, respectively.

4–38 Visual Objects Getting Started

The IDE Tools

Auto Layout provides a quick way to get started with your
menu structures—you can use the resulting menus as is, or you
can customize them as desired to fit your application. Of course,
you can easily create your own custom menu structures in the
Menu Editor.

Creating Toolbars For each menu structure you create, you can enable or disable a
corresponding toolbar. If enabled, you can choose which items
in the menu structure should have corresponding buttons
displayed on the toolbar, as well as, which graphic should be
used to represent each item. In addition, if desired, you can
choose the File Preview Toolbar menu command while in the
Menu Editor to preview a menu structure’s toolbar.

Menu Items and Events Like some window controls, an important property of items on a
menu is an event name. This is because menu items, like certain
window controls, initiate actions or events. The Menu Editor
makes it easy for you to associate actions with menu items using
the event name property, exactly as previously described for the
Window Editor.

Report Editor The Visual Objects Report Editor is a state-of-the-art report-
publishing tool that allows you to create sophisticated reports.
The Visual Objects Report Editor consists of the CA-Report
Writer and the CA-Report Viewer.

CA-Report Writer has its own environment that you can use to
create, edit, and print reports. To create a report, simply choose
the Tools Report Editor menu command to start the Report
Editor; you can also view your report in the CA-Report Viewer.

When creating a report you will enter a report name, choose a
data server (DB or SQL) as well as a report style. The CA-Report
Writer provides the following report styles: tabular, form, label,
letter, free style, and cross tabular.

Based on those choices, CA-Report Writer lays out an initial
report, which can then be customized as desired. For example,
you can Insert a picture by using the Insert Picture menu item.

An Overview of the IDE 4–39

The IDE Tools

You can also preview the report by clicking on the preview
toolbar button. The CA-Report Viewer displays the report that
was just created. For example:

CA-Report Writer’s initial report can be customized by adding
report details like literal, database, and computed fields;
spreadsheet-like functions; and text. You can also add graphics
using CA-Report Writer’s drawing features. Typeface, color,
and size can be selected for your report text, and you can add
bolding, italics, and other print features.

Once a report has been designed and saved on disk as a .RET
file, Visual Objects automatically generates object-oriented code
that you can use to access the report (for example, print it or
allow the user to preview it on screen) from within your
application.

CA-Report Editor makes it easy to incorporate professional-
quality reports into your Visual Objects applications. Since
Visual Objects also includes the royalty-free CA-Report Writer
Runtime, you can deliver this powerful report technology free
with any of your applications.

Note: Refer to the IDE User Guide and the Programmers Guide for
more in-depth information about using CA-Report Writer with
Visual Objects.

4–40 Visual Objects Getting Started

The IDE Tools

Image Editor

The Image Editor is launched using the Tools Image Editor
menu command. Using the Image Editor, you can create custom
icons, bitmaps, ribbons, and cursors for your applications using
a drag-and-drop interface that allows you to work with several
images at the same time. Icons, bitmaps, and cursors are saved
in standard Windows .ICO, .BMP, and .CUR files, respectively,
that can be defined to your application as resources. Ribbons
are bitmap strips consisting of one or more rectangular bitmaps
that have been placed side by side. Ribbons can be defined in
the Menu Editor by choosing the .BMPs for the toolbar buttons.

The Debugger

The Visual Objects Debugger provides advanced tools for
tracking and correcting errors that occur at runtime. With the
Debugger you can:

■ Control the execution of your application while viewing the
source code in the Source Code window.

■ Execute any part of your application using one of several
execution modes, including a mode in which you step
through the code one line at a time.

■ Stop program execution using breakpoints.

■ Interact with the editor. Preset breakpoints in the Source
Code Editor. Monitor watch expressions in a separate
window.

■ Evaluate expressions on-the-fly.

■ View and modify variables of all storage classes.

■ View database, index, and other work area information in a
separate window.

An Overview of the IDE 4–41

The IDE Tools

■ View and modify system settings.

■ Use the just-in-time debugging feature, which allows the
debugger to be invoked when a runtime error occurs and
highlights the offensive line of code, if the entity is compiled
with the debug option turned on. If the debugger is not
turned on, the debugger will still be invoked but the
offending line of code will not be displayed. However, the
call stack and variable information are available.

Note: For detailed information about the Debugger’s new
features, such as AutoStart debugging and DLL debugging, both
of which were described in the introductory chapter, see the
online help.

In addition, Visual Objects allows you to set debugging options
at any level—for a single entity or module, or for an entire
application—and to override the current default setting at the
next lower level.

This means that if you have a successful, stable application and
decide to add new features to it, you can save valuable time by
testing and debugging only the new module or entity. It also
means that, with new applications, you can debug the
application piece-meal by setting the application-level debug
flag on, and selectively turning off the debug flags for modules
and entities that you are not currently interested in debugging.

You can also use the terminal window in order to display data to
the screen. By including the Terminal Lite library in the
application properties, the terminal window will display at
runtime. The following functions and commands are supported
in the terminal window:

■ ? ■ WAIT ■ SET CONSOLE

■ ?? ■ SET ALTERNATE ■ SET COLOR

■ INKEY() ■ SET PRINTER

4–42 Visual Objects Getting Started

The IDE Tools

What’s Next
This chapter has given you an overview of the Repository
Explorer and the visual editors that make up the Visual Objects
IDE. These tools provide an immediate means for you to
examine and control your applications and will become even
more useful as your applications increase in sophistication.
Building upon the tour provided in this chapter, the next chapter
teaches you how to use Visual Objects with a “hands-on”
tutorial.

An Overview of the IDE 4–43

Chapter

5 Learning the Basics

The best way to learn about Visual Objects is to use it, and this
chapter lets you do just that by presenting a series of hands-on
lessons that step you through the creation of a standard MDI
application for order entry purposes.

You will create the order entry application through completion
of the following tasks:

■ Build and execute the Standard Application to explore its
built-in features

 Visual Objects makes it easy to start developing applications
by providing predefined frameworks with generated
object-oriented code. One GUI framework, for example, is
the Standard Application, which is fully functional and will
serve as the basis for the order entry application that you
will create.

■ Define data servers for the new application

 A data server provides a way to interact with a database.
You’ll create data servers by importing a library that
contains a predefined data server and associating the library
with the new application. You’ll then use the DB Server
Editor to add a second data server to that library.

■ Create a data window using the Window Editor and link it
to the data servers that you created

■ Add two new methods to display the data in either numeric
or alphabetical order

Learning the Basics 5–1

Lesson 1: A Tour of the Standard Application

■ Customize the menus provided by the Standard Application
to add three new menu items: one to open the data window
created earlier and two more to implement the methods for
switching between orders

■ Build and execute the customized order entry application

Working through this chapter, you will create a full-featured
application—complete with menus, toolbars, status bar, and
event and error handling—with a minimum of time and effort.
You will also gain an understanding of the skills and concepts
needed to get a quick and productive start with Visual Objects.

This tutorial assumes you have read through the first part of this
guide, and describes only those features of the IDE that are
required to create the sample application. For a complete
description of all Visual Objects features, please refer to the IDE
User Guide and the online help. For more information on the
programming concepts introduced here, refer to the
Programmer’s Guide and the online help.

This tutorial is lengthy, but you can stop at any point you like.
Just make sure you save your work and shut down any editors
that are currently in use. You can pick up where you left off at
another time. You may find the beginning of each new lesson a
convenient point for taking a break.

5–2 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

Lesson 1: A Tour of the Standard Application
There are many types of applications for windows and Visual
Objects is capable of creating them all. The Application Gallery
is the starting point for all new development because it presents
you with an easy to use selection of pre-defined frameworks that
are designed to offer an easy kick-start to your development.

Application Gallery Open the Application Gallery by –

■ Selecting the New Application… option from the File menu

■ Pressing Crrl+N on the keyboard

■ Clicking on the New icon on the toolbar

■ Right-click on the Default Project icon in the left hand tree
and click on the New Application option that is displayed in
the popup-menu that is displayed.

Learning the Basics 5–3

Lesson 1: A Tour of the Standard Application

Across the top you can see eight tabs, each of which will present
you with different options but each is self-contained and
presents you with all of the available options to complete the
setup. These tabs provide an easy way of grouping similar items
together making them easy to find.

The names of the tabs make it obvious as to the type of
applications that can be generated from them. The Samples and
VO27 Samples tabs are of particular interest and it is
recommended that you take the time to install and examine the
contained applications.

NOTE: The applications on the VO27 Samples tab are mostly to
demonstrate new features that are only available on Windows
XP using Visual themes.

As you click on each of the icons a short description of the
application or sample is displayed in the Description area so as to
give you an idea of what it will do.

Beneath the Description area are the Options that can be set. The
Name: is the name that will be displayed in the left hand tree of
applications. The File: is the name to use when generating the
executable file and the location to create it in. Notice the use of
%ExecutableDir% which is a convenient way of specifying the
C:\Cavo27\Bin directory or where ever you installed Visual
Objects.

The last part of the Options section is the optional components
list where you can select the required parts that can apply to the
selected application. Again, as you select each component in the
list, a short description is displayed beside it so that you can
make a more informed decision as to whether you want it or not.
In the end, those items that are ticked will be included.

Standard Application Make sure that the Standard MDI icon is selected, change the
Name: to Order Entry, change the File: to
%ExecutableDir%\OrderEntry.EXE and press the OK button.

5–4 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

When the New Application window closes double-click on the
icon beside Order Entry and you will see the modules that have
been imported.

Building and Running the Standard Application

The few steps that you have just taken to generate this
application have given you a practical and useful starting point.
Without writing even one line of code, you have a working, MDI
application. To fully understand this application, we will take a
much closer look at the generated source code, but to start with
lets see it running.

Click the Build toolbar button to compile the entire application.
The dialog box that is displayed during the compilation allows
you to monitor the progress. When the compile is completed
without error the Build Done message is displayed in the Status
Bar at the bottom of the IDE.

Learning the Basics 5–5

Lesson 1: A Tour of the Standard Application

You have created your first Visual Objects application with just a
few mouse clicks and in just a few minutes! After the build is
complete, click the Execute button to run the application:

After a few seconds, Visual Objects opens a new application
window titled “Standard MDI Application.” Later in this lesson,
we will run the application again and explore it more fully, but
for now, choose the File Exit menu command, and we’ll take a
look at customizing the application a bit.

A Closer Look at the Application

All applications need a start method so this is probably the best
place to begin. Click on the Start module in the tree and you will
see two entities in the list, both of which belong to the App class.
The Start() method of the App class is usually referred to as the
App:Start() method.

Learning the Basics 5–6

Lesson 1: A Tour of the Standard Application

When we were selecting the application from the gallery we
selected the Standard MDI and not the Standard SDI application.
Now is probably a good time to discuss the differences between
these two types of application. This will also help you to
understand some of the basic concepts underlying the structure
of an MDI application.

MDI Application Structure

The Windows MDI applications are structured around the presentation of
multiple windows. They typically use a shell window as the
main, or “owner,” window. The documents that are opened in
the shell window are referred to as child windows. Child
windows are owned by the shell.

In the Standard Application, the shell window is created using
the StandardShellWindow class. This class inherits from the
ShellWindow class in order to add more functionality to the
basic shell window, while preserving what is already there (for
more information on inheritance and subclassing, refer to
“Object Oriented Programming Concepts” in this guide). Thus,
characteristic of most MDI applications, the Standard
Application defines a shell window in which you can open any
number of child windows.

When we speak of child windows, we are referring to windows
that are owned by the shell window. These windows are
typically derived from one of two classes: ChildAppWindow or
DataWindow.

The DataWindow class actually inherits from the
ChildAppWindow class and adds functionality to support
linking the window directly to a database through a data server.
Thus, a data window is a kind of child window. We, therefore,
use the terms “child window” and “data window”
interchangeably in this discussion.

Learning the Basics 5–7

Lesson 1: A Tour of the Standard Application

Note: An SDI application, by contrast, is structured around
displaying a single document at a time. Typically, it uses a top
window (based on the TopAppWindow class) as the owner
window, and a ChildAppWindow or DataWindow as the child.
The difference is that with a top window as the owner, only a
single child window can be open at a time.

The App Object Just as each child window has the shell window as its owner,
everything in a Visual Objects GUI application has an owner.
This is a very important concept that controls much of the action
in the application.

At the highest level, the topmost window in an MDI
application—the shell—is owned by the App, an invisible object
that controls the basic event processing of the system:

App

owns

Shell
Window

Child
Windows

owns

The App object represents the overall application—it starts,
runs, stops, and handles all events (such as mouse clicks and
keystrokes) in the application.

5–8 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

The App:Start() Method

Every application you create in Visual Objects requires some
function or method named Start() that serves to get the
application started; in the Standard Application, this is the
App:Start() method.

Double-click on the icon beside Start in the right hand list to
open the Source Code Editor. You should now be viewing the
source code and it should look like this:
METHOD Start() CLASS App
 LOCAL oMainWindow AS StandardShellWindow

 SELF:Initialize()

 oMainWindow := StandardShellWindow{SELF}
 oMainWindow:Show(SHOWCENTERED)

 SELF:Exec()

What this does is declare, create, and show the shell window
(it’s called oMainWindow and is instantiated using the
StandardShellWindow class described in the next section). It
also calls the App:Initialize() and App:Exec() methods—actually,
the source code reads “SELF:Initialize()” and “SELF:Exec()” but
that is easily explained.

Before the App:Start() method is invoked, the App object is
created by the system automatically (that’s why we called the
App object “invisible” earlier). You never need to instantiate an
object of the App class (as you do with all other objects used in
an application), just as you never need to explicitly invoke the
App:Start() method. The system does all of this for you in order
to get your application started.

Once the App object exists and its Start() method is executing,
App calls its own methods—for example, Exec()—by referring to
them using SELF. SELF is a special keyword that refers to the
object whose method is currently executing—for example,
SELF:Exec(). You also see the SELF keyword used to instantiate
the StandardShellWindow class, which is further explained in
the next section.

Learning the Basics 5–9

Lesson 1: A Tour of the Standard Application

Note: Within the App:Start() method you can call App:Exec().
Doing so invokes the Windows event handling loop for your
application, as well as the Visual Objects event handling
mechanism. Unless you invoke App:Exec(), the system cannot
start sending you events. (See Default Event and Error
Handling below.)

The Shell Window

Now that you have seen the App:Start() method, you
understand how the application gets started, so let’s take a look
at the shell window for this application. It is defined in the
Standard Shell module.

Assuming you are still viewing the App:Start() source code:

1. Click on the Source Code Editor’s Close button to close this
window:

 You are returned to the Repository Explorer.

5–10 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

2. If you have changed away from the default view, click on
the Group By Module toolbar button to display the
applications module listing.

3. Click on the Standard Shell module in the tree view pane of
the Repository Explorer.

4. The list is shown in alphabetical order. Click in the Class
column header and the list will be in alphabetical order by
class.

The explorer should now look like this:

Recall that this type of entity listing displays only the entities in
a particular module. In this section, we will be taking a closer
look at the Standard Shell module as a whole; therefore, the
entity listing for this module will be more convenient to use than
the application-wide entity listing.

StandardShellWindow The shell window for this MDI application was instantiated in the
App:Start() method using the StandardShellWindow class:
oMainWindow := StandardShellWindow{SELF}

Learning the Basics 5–11

Lesson 1: A Tour of the Standard Application

The class declaration for StandardShellWindow is at the top of
the list view. Notice that the Class column is empty for this
entity, after all, it is a class.

Double-click on it to view the source code, and you will see that
this class derives from the ShellWindow class:

Note: The second line of code defines a PROTECT instance
variable that can be used to specify printing device properties
when printing from the shell window.

The ShellWindow class resides in the GUI Classes library—as
mentioned earlier, this class is already configured to support
MDI. Since StandardShellWindow inherits from ShellWindow,
it is preconfigured for MDI support as well.

Init() Method Close the Source Code Editor and when you return to the entity
list view, scroll through the list—you will see several methods
defined for the StandardShellWindow class.

Among the most important methods is StandardShellWindow’s
Init() method. It is called automatically by App:Start() upon
instantiation of the StandardShellWindow class.

5–12 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

Scroll down to the StandardShellWindow:Init() method and
double-click on it to view it in the Source Code Editor, so that
we can see what it does and do a little customizing.

After double-clicking on the Init() method, it is loaded in the
Source Code Editor:

The first thing you notice is that this method takes a parameter
called oOwnerApp. If you remember, the App:Start() method
instantiated this class using SELF as an argument, so the
window knows who its owner is (the App object).

Then, StandardShellWindow:Init() invokes the Init() method of
its superclass, ShellWindow. This has two effects:

� It ensures that the internal data of the ShellWindow class is
properly initialized—that is the job of any Init() method.

� It registers the App object itself as the owner of the
StandardShellWindow.

Learning the Basics 5–13

Lesson 1: A Tour of the Standard Application

As you scroll through the rest of the method, you can see that
there is some code to enable the window as a drag-and-drop
client; to enable a status bar and put some information on it; to
attach a menu to the window (more on this below); to define an
icon for the window when it is minimized (this icon is also
defined in the Standard Shell module as the
IDI_STANDARDICON resource and constant); and to initialize
the printing device instance variable.

Finally, there is code to create a caption (or title) for the window,
which you will now customize for this application. To do this:

1. Move the cursor to the line of code reading:
 SELF:Caption := "Standard MDI Application"

2. Change it to:
 SELF:Caption := "Order Entry"

Close the Source Code Editor (just double-click on its system
menu) and save your change by choosing Yes when prompted.
Notice that in the entity list view the Vitality status has changed
to Uncompiled and the Last Touched date has been updated to
reflect that the source code for this entity has been changed.

Other Methods When you return to the entity list view, you can see that besides
the Init() method, StandardShellWindow has methods to
respond to events generated by its menu, including one called
FileExit() to shut down the application (by calling the
SELF:EndWindow() method which internally invokes
App:Quit()) when the user closes the shell window.

Note: While viewing the Start() method you can right-click on
the StandardShellWindow text. A local GOTO pop-up menu
displays, listing the Class and Init() method:

Clicking on these entries will bring you right into the Source
Code Editor for the Class definition and Init() method.

5–14 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

The Empty Shell Window

When no child windows are open in the shell window, it is
referred to as the empty shell window. This is the state of the
shell window when it is initially created by App:Start(), and the
menu associated with the empty shell window is necessarily
sparse because of the limited actions that you can perform when
no data is present to manipulate.

EmptyShellMenu In StandardShellWindow:Init(), the menu attached to the
window was instantiated with the following line of code:
SELF:Menu := EmptyShellMenu{SELF}

This EmptyShellMenu class is defined in the Standard Menus
module. Click on the Standard Menus module to access the
entity list view for this module and click on the Class column
header to sort the items:

Ignoring the StandardShellMenu items for the moment, along
with the EmptyShellMenu class, you will see an
EmptyShellMenu_Accelerator class, an EmptyShellMenu menu
entity, resource entities for the menu and the accelerator, several
constants to identify properties of the menu, and Init() methods
to instantiate both classes mentioned. All of this code was
generated by the Menu Editor, which you will look at next.

Learning the Basics 5–15

Lesson 1: A Tour of the Standard Application

Note: To display all entities the Show all items must be selected
in the options Entity view tab. The options dialog box can be
displayed by selecting the View Options menu command.

Resource Entities For example, to define the empty shell menu and its accelerator

keys in a way that is understood by Windows, there are two
resource entities, IDM_EMPTYSHELLMENU and
IDA_EMPTYSHELLMENU. These can be found in the list view
by looking at the Type column, (you may need to scroll across
the list view to see them), which specifies the entity type as a
Resource and the SubType column which further specifies the
resource entity as a Menu or an Accelerator. You can look at
these if you like; they contain source code in the format that the
Windows resource compiler wants.

The Menu Entity The actual menu entity contains information that allows the
Menu Editor to graphically display the menu layout so that you
can edit it. For example, EmptyShellMenu contains File and
Help menus that are used to open child windows, set up
printers, exit the application, and get help.

If you like, you can double-click on the EmptyShellMenu binary
menu entity to get an idea of what this menu looks like in the
Menu Editor (you’ll actually learn how to use this editor later in
this chapter).

5–16 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

As you can see, EmptyShellMenu has just two menus: File and
Help. Note that the Menu Editor allows you to design a toolbar
to be associated with a menu. As part of the Standard
Application, EmptyShellMenu is paired with a toolbar—when
you later attach EmptyShellMenu to a window, the toolbar is
automatically pulled in at the same time.

Note: The toolbar is not part of the display that you normally
see in the Menu Editor. You can view it using the File/Preview
Toolbar command.

When you are through looking at the menu, close the Menu
Editor by double-clicking on its system menu.

The Standard Shell Window

The relationships between the shell window, the
EmptyShellMenu, and its toolbar are summarized in the
diagram below:

Learning the Basics 5–17

Lesson 1: A Tour of the Standard Application

StandardShellWindow EmptyShellMenu

No open child windows

LOGICAL PHYSICAL

No open child windows

EmptyShellMenu
EmptyShellMenu's

toolbar
EmptyShellMenu's

toolbar

Opening a document (or child window) into the empty MDI
shell window alters the nature of the shell window. It is no
longer empty, but now holds another window in which data can
be viewed and manipulated. When it contains one or more open
documents, the shell window is referred to as the standard shell
window. And, since the documents show data, more
functionality is needed to view and manipulate the data—just
the File and Help menus are no longer sufficient.

StandardShellMenu In the Standard Menus entity listing, you will see another menu
entity named StandardShellMenu. Like EmptyShellMenu, this
menu also has classes, resources, constants, and methods that
help define it.

If you double-click on the StandardShellMenu binary menu
entity, you can see that it contains not only File and Help menus,
but several additional menus and commands that let the user
manipulate the database in the child window.

For example, if you use the scroll bar, you can see standard Edit
menu commands like Cut, Copy, Past as well as Insert and
Delete Record:

5–18 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

Also, like EmptyShellMenu, StandardShellMenu has its own
toolbar. (When you are finished looking at the menu, close the
Menu Editor by double-clicking on its system menu.)

Learning the Basics 5–19

Lesson 1: A Tour of the Standard Application

Relationship to
Child Windows

It is important to note that the shell window is not the owner of
the StandardShellMenu. Instead, this menu is owned by the
child window that is currently open and selected (or has
“focus”). It is the child window that contains the data, and,
therefore, it is the child window that requires the additional
functionality provided by the StandardShellMenu. When a
child window has focus, the shell window automatically
“knows” to replace its own menu with the child window’s
menu.

For example, you might develop a shell window into which the
user can open a text editing window and a spreadsheet at the
same time. In this situation, not only would the menu for each
type of child window differ from that of the empty shell
window, but also the various types of child windows would
most likely have menus that were different from one another.
The shell window knows to display the appropriate menu,
depending on which child window has focus.

The Standard Application takes care of this for you—when you
open a child window for a database file into the shell window,
the menu displayed in the shell window is repainted, so that
instead of EmptyShellMenu, the StandardShellMenu is
displayed.

The replacement of one menu by another is accomplished
through methods in the StandardShellWindow class. Basically,
the menu selection to open a database file from
EmptyShellMenu triggers an event that calls the
StandardShellWindow:FileOpen() method that, in turn, calls a
series of methods that instantiate the StdDataWindow class for
the chosen database file.

5–20 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

The Init() method of the StdDataWindow class instantiates the
StandardShellMenu class to display this new, more functional
menu. (The StdDataWindow class is discussed in more detail in
the next section.)

The relationships between the menus and toolbars displayed in
the standard shell window and its child windows are
summarized in the diagram below:

StandardShellWindow

LOGICAL PHYSICAL

EmptyShellMenu's
toolbar

Multiple child windows

StandardShellMenu

StandardShellMenu's
toolbar

EmptyShellMenu's
StandardShellMenu

StandardShellMenu's

Multiple child windows

toolbar

toolbar

Note that while the shell window replaces its menu with that of
the child window, it does not replace its toolbar. Instead, the
shell window keeps its initial toolbar (EmptyShellMenu’s), and
each child window has its own toolbar (StandardShellMenu’s).

Learning the Basics 5–21

Lesson 1: A Tour of the Standard Application

The Child Windows

As mentioned in the previous section, the child windows
opened in the shell window are instantiated (albeit indirectly) by
the StandardShellWindow:FileOpen() method using a class
named StdDataWindow that is defined in the Standard Shell
module.

StdDataWindow If you access the entity listing for Standard Shell and
double-click on the StdDataWindow class entity, you will see
from the source code displayed that it derives from the
DataWindow class:

Like the ShellWindow class, DataWindow is defined in the GUI
Classes library.

Data Windows A data window is a special kind of window that is capable of
interacting intelligently with a database. The data window can
easily display the contents of the database and has
preprogrammed methods for moving among the records and
manipulating the data (for example, Insert and Delete Record).
In fact, the StandardShellMenu gets much of its functionality by
directly invoking methods defined in the DataWindow class.

5–22 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

Data Servers A data server is an object-oriented interface provided for
interacting with a database. It is through the data server that the
data window connects to a database and learns about its
structure.

Although you can design both data windows and data servers
for specific databases using editors built into the IDE (as you
will see in subsequent lessons in this chapter), the Standard
Application allows you to open any .DBF file by instantiating it
as a data server (using the DBServer class defined in the RDD
Classes library). It takes advantage of the self-configuring
properties of the DataWindow class to design a data window
“on-the-fly” for that data server. It is the behavior that is built
into the DBServer, and DataWindow classes, rather than
anything remarkable done by the Standard Application, that
makes programming the self-configuring data windows so easy.

.DBF Files In fact, the generated code is quite simple. For example, this is
the flow of control for opening a .DBF file:

■ StandardShellWindow:FileOpen() displays a standard File
Open dialog box to allow the user to select a .DBF file name
and calls its DoOpenFile() method using the resulting file
name.

■ DoOpenFile() verifies that it has a valid file name and then
instantiates StdDataWindow using owner, file name, and
data server parameters and registers this new window as a
child of the shell window.

■ Finally, StdDataWindow:Init() instantiates a generic data
window, registers its menu, instantiates a DBServer for the
chosen file and links it to the data window, and displays the
new data window in browse view.

Note: You can open all of these methods in the Source Code
Editor at the same time and easily follow the logic described
here. After you have loaded one (FileOpen(), for example),
switch back to the Repository Explorer then double-click on
another entity (perhaps DoOpenFile()), and it will be added to
the source code currently loaded in the Source Code Editor.

Learning the Basics 5–23

Lesson 1: A Tour of the Standard Application

Default Event and Error Handling

In a moment, we will build and run the Standard Application so
that you can see the windows and menus in action, but first it
will help to understand something about the basic event
handling logic that is already built into the application.
However, before moving on, close the Source Code Editor.

Event Handling To briefly explain event handling, we’ll start with the Windows
environment. Windows provides a flexible, interactive
environment in which multiple applications can be active and
available simultaneously. To achieve this, all applications
running under Windows interact with Windows—and possibly
other GUI applications—through a message queue.

The message queue receives messages from both the operating
system kernel and other applications. These messages are used
to notify applications of events that require attention. For
example, if the user presses a button or selects a menu in an
application, an event is posted to the message queue. (The
Windows message queue maintains both user-generated and
system-generated events.)

The message queue then notifies the various applications of the
events that pertain to them. When programming for Windows,
therefore, your applications must know how to handle (interpret,
respond to, and generate) events.

In Visual Objects, the basic event handling logic is this: a
command event (such as a menu or push button selection) is
sent first to the lowest-level window that has focus. If that
window has no mechanism for dealing with the event, the event
is passed up to the window’s owner. This propagation of an
event up the ownership chain continues until some window
handles the event or until it finally reaches the App, where it
most likely ends up doing nothing.

5–24 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

Some examples of built-in event generation and handling in the
Standard Application have already been mentioned in this
section. For example, in the empty shell window when the File
Open menu command or the Open toolbar button is selected, a
FileOpen event is generated, causing the
StandardShellWindow:FileOpen() method to be invoked.

The event names for menu commands are defined in the Menu
Editor, as you will see later in this chapter. Visual Objects
processes these events automatically by trying to match the
event name first to a method, then to a Window or ReportQueue
subclass of the same name. The event is then handled either by
invoking the method or instantiating an object of the subclass.

This automatic propagation is quite useful. In an MDI
application, for example, File Save and File Print are normally
handled by the child window because these commands are
specific to each document, while File Open and File Print Setup
are more general and are, therefore, normally handled by the
shell window.

Again, you can see this illustrated in the Standard Application.
The StandardShellMenu has both a File Open menu command
and an Open toolbar button, but the child window that owns
this menu does not have a FileOpen() method. So, when the
FileOpen event is generated from a child window, it ends up
being handled by the StandardShellWindow:FileOpen() method.

Error Handling There is also some error handling provided by the Standard
Application. For example, if you attempt to open anything other
than a .DBF file with the File Open menu command, you’ll
receive a message similar to the following:

Learning the Basics 5–25

Lesson 1: A Tour of the Standard Application

A Closer Look at the Standard Application

Now that you have examined the source code and have a
general understanding of the structure of the Standard
Application, we will build the application and run it again, this
time taking a closer look at its features.

1. Click the Build toolbar button to compile the application.

2. After the build is complete, click the Execute button.

The Empty Shell Window

After a few seconds, Visual Objects opens a new application
window titled “Order Entry”. (This bit of customization is due
to the change you made earlier to StandardShellWindow:Init().)
As expected, an empty shell window is displayed:

Menu

Toolbar

System Menu Title Bar
Minimize, Maximize,
and Close buttons

5–26 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

As you can see from this simple window display, the Standard
Application provides a host of useful, functional application
features. In addition to standard Windows features like the title
bar, menu bar, system menu, minimize and maximize icons, and
resizable border, this default application also includes some
other handy items.

The Menus The menu associated with the empty shell window is very
sparse, as discussed previously. For example, take a look at the
File menu by clicking on it or typing Alt+F:

This menu has only four commands (Open, Print Setup, Send,
and Exit), which is all it needs. There is no Print command,
because there is nothing to print, and there is no Close
command, because there are no open child windows to close.

The Toolbar The toolbar for the empty shell window is also brief, containing
only two buttons that serve as shortcuts for the File Open and
Help menu commands.

The Status Bar The status bar is also full of useful information. For example,
highlighting the commands on a menu or moving the mouse
over the buttons in a toolbar displays descriptive text about
those features in the bottom left-hand corner of the status bar.
The status bar also tracks the current time.

Learning the Basics 5–27

Lesson 1: A Tour of the Standard Application

Opening Database Files

As we mentioned earlier, the Standard Application supports the
ability to open any .DBF into a self-configuring data window.
Let’s open the CUSTOMER.DBF file and see how this changes
the nature of the shell window.

1. Click on the Open toolbar button or choose the File Open
menu command.

 A standard Open dialog box is displayed:

2. Since this dialog is already preset to .DBF files, simply
switch to the Visual Objects \SAMPLES\GSTUTOR
directory, highlight CUSTOMER.DBF, and choose Open.

5–28 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

 The selected database file is then opened in a data window:

This data window allows you to view and modify the data
stored in the selected database file. You can see what database
file a window is associated with by the text displayed in the
child window title bar.

Important! The Standard Application does not have an option for
opening index files. Therefore, if you are using it to open database files
with associated index files, do not edit data or add or delete records.
Otherwise, the index files will be out of date the next time you attempt
to use them.

Learning the Basics 5–29

Lesson 1: A Tour of the Standard Application

Switching Between Form and Browse View

Data windows can display the information they get from their
associated data servers in two ways: in form view or in browse
view. Form view displays all the fields in a record as individual
edit controls (a single record at a time). Browse view, on the
other hand, displays many records at once using a
spreadsheet-like data browser; in this view, each field in the data
server represents a column in the browser and each record a
row.

Using the Form View and Browse View toolbar buttons, you can
switch between these two views:

5–30 CA-Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

For example, click on the Browse View button in the current
data window—the program redisplays the window, showing
many records in browse view:

Dynamic Scroll Bars You will notice, if you compare these two views, that the data
window in browse view has both a horizontal and a vertical
scroll bar because all the data will not fit into the window, while
the form view may have only a vertical scroll bar.

Learning the Basics 5–31

Lesson 1: A Tour of the Standard Application

Furthermore, if you now switch back to form view by clicking
on the Form View button, and then click on the maximize button
(every data window, as a child of the owner MDI shell window,
has its own independent controls, such as minimize and
maximize buttons and a system menu), the vertical scroll bar
disappears:

The scroll bars in child windows dynamically come and go,
based on the current size of the window and how much data
needs to be displayed. This, along with the minimize and
maximize buttons and the system menu, is a built-in feature of
all child windows that requires no programming on your part.
You can also resize the form view window to see the dynamic
creation of the horizontal and vertical scroll bars.

Note that in both the browse and form view, you can edit the
displayed data by simply typing over the contents of the field
that is currently selected. Pressing Tab “commits” the changes
and moves to the next field.

5–32 CA-Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

The Standard Shell Window

As discussed, when you opened a child window in the shell
window, the menu previously displayed in the empty shell
window was automatically replaced with the menu associated
with that child window.

The Menus Let’s take a look at some of the features of the new menu. First,
open the File menu:

You will notice right away that this File menu has a Close
command that was not present in the empty shell window’s File
menu. This command closes the currently selected data
window.

If you continue to explore by opening the Edit menu, you will
see commands to navigate among the records in the current data
window (such as Next and Previous), as well Delete Record and
Insert Record commands, whose purposes are self-explanatory.

Finally, the View menu contains commands to switch between
form and browse view, and the Window menu provides
standard Tile and Cascade commands, the ability to choose
between all open child windows, and a Close All command to
close all open data windows.

Learning the Basics 5–33

Lesson 1: A Tour of the Standard Application

The Toolbar You will also notice that, while the menu in the shell window
has been replaced with that of the child, each window still has
its own toolbar (which you have already used to switch between
browse and form view).

The child window’s toolbar is illustrated below with each button
identified:

Close

Cut

Copy
Previous

Next
Form

Browse
Paste

Go Top
Go Bottom

The Status Bar When a child window has focus, moving the mouse over the
toolbar buttons will display the tooltips for each button and a
description on the status bar. It can also be used to display a
basic description for the currently selected field, but you have to
provide the descriptions as part of the data server definition—it
is not built into the self-configuring data window created by the
Standard Application. (You will implement this feature when
you create some data servers of your own in the next lesson.)

Opening Multiple Windows

Finally, to get the full flavor of the capabilities of the Standard
Application, we will open a few more data windows and see
what happens.

1. Return the window to browse view by clicking on the
Browse toolbar button.

2. Restore the CUSTOMER.DBF window by clicking on its

restore button.

3. Using either the Open toolbar button or the File Open menu
command, load the ORDERS.DBF file located in the Visual
Objects \SAMPLES\GSTUTOR directory.

5–34 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

 Switch to browse view, displaying the following:

4. Click the Next toolbar button to move the cursor to the
second record.

5. Now, open DETAIL.DBF (also located in
\SAMPLES\GSTUTOR) in another window, switch to
browse view, and click the Go Bottom toolbar button to
move the cursor to the last record.

6. Tile the windows using the Windows Tile command, and
notice how each window maintains its own record pointer:

Learning the Basics 5–35

Lesson 1: A Tour of the Standard Application

7. When you are through, choose the Window Close All
command.

Using OLE Database Files

Visual Objects supports an OLE field type in database files.
Using the OLE field type, the user can insert objects or OLE
controls into the database. These fields can also be changed at
runtime. Data servers that contain an OLE field can be created
using the Visual Objects DBServer Editor. To display the server
at runtime, a window can be created using the Auto Layout
feature of the Window Editor.

5–36 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

At runtime, there are several things that can be done to the
OLEObject field:

■ Insert a new OLE object (through the edit menu, through
drag-and-drop, or through Paste Special from the
Clipboard)

■ Insert a linked object

■ Change the OLE object

The following displays a data server with an OLE field that
contains a photo of the Visual Objects development team:

For more information, see the Using OLE in Database section of
the “Object Linking and Embedding” chapter of the
Programmer’s Guide.

Learning the Basics 5–37

Lesson 1: A Tour of the Standard Application

Summary

In this lesson, you’ve seen and learned quite a bit about the
Standard Application generated by Visual Objects. You’ve been
given a basic description of the structure of an MDI application,
and you’ve seen how the Standard Application implements that
structure by looking at both the generated source code and the
running application.

The Standard Application demonstrates many of the features
available in Visual Objects. A lot of these features are fully
automatic, such as:

■ The minimize and maximize buttons, system menu, and title
bar that are part of every shell and child window that you
create

■ The scroll bar behavior that is built into every child window

■ The ability to open multiple documents simultaneously

■ The ability to open .DBF files in a self-configuring data
window

■ The ability to open multiple documents simultaneously

■ The event handling built into every application

Other features, such as displaying information on the title and
status bars and the ability to navigate and change the contents of
a database, require a minimum amount of programming
because they are built into the GUI Classes library as methods
and properties of the various window classes.

Still other features—such as menus, toolbars, data forms, and
data servers—are facilitated by the code generators associated
with the various editors in the IDE (which you will see in
subsequent lessons). The IDE editors take full advantage of the
automatic event handling mentioned earlier, making it easy for
you to connect events to items on a menu and controls on a
form, as you will also see in subsequent lessons. Finally, the
editors understand the relationships between menus, toolbars,
and forms of various types and, therefore, allow you to make the
connections between them as part of the design process.

5–38 Visual Objects Getting Started

Lesson 1: A Tour of the Standard Application

The Standard Application, even with all of its functionality, will
seldom be enough to handle all of your business needs, but it
provides a great starting point for creating a customized
application. In this lesson, you’ve already done a very small bit
of customization by changing the shell window’s title bar
caption, but let’s move on to a more in-depth alteration.

Learning the Basics 5–39

Lesson 2: Setting Up the Data Servers

Lesson 2: Setting Up the Data Servers
Up until now, we’ve called this new application the Standard
Application because, after all, it has hardly anything to do with
order entry yet. In fact, the only code you’ve written so far is to
change the title bar caption of the shell window. Starting with
this lesson, however, the changes you will make will be more
significant; and we will, therefore, refer to the application as
Order Entry from now on.

In this lesson, you will set up data servers for two database files:
CUSTOMER.DBF and ORDERS.DBF. The concept of a data
server was mentioned briefly in the previous lesson because the
Standard Application uses them to interact with the
self-configuring data windows that it creates.

Basically, a data server is a high-level, abstract entity designed to
give you a consistent OOP interface for your database files and,
more importantly, to allow them to interact with data windows.
The data server acts as a database interpreter, defining its file (or
table) name, specifying the order in which it is accessed, and
providing a mechanism for extending field definitions beyond
the basic name, type, and length information stored in the
database file structure (this last part is accomplished using a field
specification).

As you work your way through the development cycle, you can
make on-the-fly changes to a data server (for example, changing
the validation or formatting rules for one or more fields). Visual
Objects ensures that these changes are reflected in all
appropriate places, such as a window that is associated with that
data server or another data server that is sharing the same field
specification.

The purpose of this lesson is to provide the basis for creating a
customized, master-detail data window in the next lesson. The
information stored in these data servers will be automatically
picked up by the data window, and you will see the results
when you connect that window to a menu command and run
the new application.

5–40 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

Importing the OE Data Servers Library

To make this lesson as quick and simple as possible, the data
server for CUSTOMER.DBF is already defined for you. It
resides in a separate library that is stored on disk as an
Application Export Format (.AEF) file, rather than in the
repository.

Note: The applications and libraries you create in Visual
Objects can be stored external to the repository as .AEF files
using the File Export command to export them. When desired,
you can import them back into the repository with the File
Import command.

To access the predefined data server, you need to import the
OE Data Servers library as follows:

1. From the Repository Explorer click on the project that
contains the Order Entry application.

2. Choose the File Import command.

 The Import Application dialog box appears.

3. Select the OESRVR.AEF file from the Visual Objects
\SAMPLES\GSTUTOR directory, and then click Open.

Learning the Basics 5–41

Lesson 2: Setting Up the Data Servers

Visual Objects creates the library and adds an entry for it
(labeled “OE Data Servers”) in the Repository Explorer’s tree
view pane:

Note: For more information about importing applications, see
the “Importing and Exporting Files” chapter in the IDE User
Guide.

5–42 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

A Quick Tour of the Customer Data Server

Before you move on to create a data server for the ORDERS.DBF
file, it will help to take a look first at the data server you just
imported. It was created for the CUSTOMER.DBF file using the
DB Server Editor, the tool in the Visual Objects IDE for creating
DBF-style data servers.

Loading the Customer Data Server

To load the Customer data server in the DB Server Editor:

1. Click on the entry representing the OE Data Servers library.

 Expand the tree structure to display the Customer module.

2. Click on the Customer module button to display a list of
entities in that module.

 There are lots of entities in this module, but we didn’t write
a single line of code to create this data server. All the code
you see was generated by the DB Server Editor, which you
are about to launch.

 Note: To display the prototype of any entity (non-binary) in
the status bar of the Repository Explorer, move the mouse
over the list of entities in the list view. This feature of Visual
Objects allows you to view information about a source code
entity without having to open it up in the Source Code
Editor.

3. Look down the list view until you see the Customer class
entity—entity types are displayed under the Subtype
column. Double-click on this entity.

 This will load the source code for the Customer class
declaration in the Source Code Editor. The Customer class
has six instance variables. One is CDBFPath, which defines
the drive and path name used to locate all files associated
with this data server (i.e., CUSTOMER.DBF and all of its
index files).

Learning the Basics 5–43

Lesson 2: Setting Up the Data Servers

 Note: If CDBFPath does not currently point to the correct
drive or path, you can change it later in this lesson (step 6).

4. Close the Source Code Editor.

5. Next, double-click on the Customer server entity to load it in
the DB Server Editor:

5–44 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

6. The DB Server Editor window appears.

 Your desktop should now look as follows after maximizing
the DB Server Editor:

The first thing you will notice about the DB Server Editor is how
simple its desktop is—just a few edit controls and list boxes, and
the floating Properties window. (You’re going to see a lot of
these Properties windows—they are featured in almost every
visual editor.)

The simplicity of this interface makes it easy to design and create
data servers (as you will see later). For example, in the File
Name edit control, you can see that this data server is associated
with CUSTOMER.DBF. It also knows the location of the file,
%CavoSamplesRootDir%\GSTUTOR\. This shows another of
those special system variables that can be used to make Visual
Objects more configurable.

Note: If you are going to put your data files in the same
directory as the final executable file, you can remove the path
completely because Visual Objects will automatically look in the
current directory for the data.

Learning the Basics 5–45

Lesson 2: Setting Up the Data Servers

In addition, if you look at the Properties window, you can see
the various properties that can be defined for a data server,
including file open modes (Shared and ReadOnly) and the name
of the associated RDD (replaceable database driver).

The Indexes List Box

In the Standard Application, you could only open database files
and you were warned against editing data in indexed database
files because the corresponding index files were not opened. By
defining your own customized data servers, you can associate as
many index files as you like. You can also select the controlling
order.

For the Customer data server, there are two index files in use,
CUSTNUM.NTX and CUSTNAME.NTX. These files are listed in
the Indexes list box—any time you use this data server, both
index files will be updated with any changes made to the
database file.

As you can see, CUSTNUM.NTX has a check mark next to it.
The check mark indicates that this index file contains the
controlling order.

The Orders List Box

Now click on CUSTNUM.NTX.

The Properties window changes so that it displays properties
related to the index file, and CUSTNUM appears in the Orders
list box with a check mark. The Orders list box shows all orders
defined for CUSTNUM.NTX and further defines which of them
is the controlling order:

5–46 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

Click on CUSTNUM in the Orders list box.

Learning the Basics 5–47

Lesson 2: Setting Up the Data Servers

Again, the Properties window changes, this time displaying
properties related to the individual order.

Because we are using .NTX index files, which support only one
order per file, you can quickly choose a new controlling order by
highlighting its associated index file in the Indexes list box and
clicking on the button with the check mark icon.

Note: If you were working with an RDD that supported
multiple orders per index file, the Orders list box would show
all the orders defined in the highlighted index file. Thus, to
define the controlling order, you would check the index file that
contained the controlling order in the Indexes list box, then
check the appropriate controlling order in the Orders list box.

However, you’ll add menu commands and methods to the
Order Entry application later in this tutorial, which will allow
the user to switch from one sort order to the other in the
resulting application.

5–48 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

The Fields Group Box

The DB Server Editor lists all fields in the data server in the
Include list box (which is in the Fields group box):

Include Versus Exclude The Include list box is used by Visual Objects to determine
which fields in the database file should be accessible when this
data server is used.

If desired, you can use the Left and Right arrow buttons situated
between the Include and Exclude list boxes to move one or more
fields to (or from) the Exclude list box. Fields that are moved to
the Exclude list box will be inaccessible when using this data
server, and a reference to an excluded field in your application
will result in a runtime error.

Field Order If desired, you can use the Up and Down arrows to the right of
the Include list box to reorder the fields (for example, move one
in the middle to the top or bottom of the list).

The order in which fields appear in the Include list box
determines the order in which they will appear when you use
the Auto Layout feature of the Window Editor to define a data
window for this data server (more on this later). (It also
determines the order in which the fields are created if you
generate a .DBF file using the File Export command.)

Learning the Basics 5–49

Lesson 2: Setting Up the Data Servers

Field Properties Finally, take a look at the properties available to a field. Click on
the CustNum field, and watch as the Properties window
changes to reflect field-related properties (and those defined for
the CustNum field in particular):

Fields in a data server have many properties (such as Picture
and Validation), all of which are shown in the Properties
window when a field in the Include list box has focus. Note that
these properties are not part of the physical structure of the
underlying database file, although some of them (such as type
and length) have counterparts in the file structure.

The data server uses something called a field specification
(derived from the FieldSpec class) to group all the properties of a
field into a single, logical entity, so that the information
pertinent to a database field can be conveniently located. This
arrangement has several advantages, but the most important
ones are listed below:

5–50 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

■ You can reuse a field specification’s information in other
data servers. For example, in many cases, the different data
servers your application uses contain similar, if not identical,
fields (for example, all zip code fields are typically the same,
regardless of where they are used).

■ Using a field specification, you can create just one field
specification and reuse it in each data server that needs it.
Thus, multiple data servers can access the same property
values for common fields.

■ A field specification’s properties are automatically inherited
by data windows. Many of the properties that you define
for a field specification in a data server are designed to be
used by data windows that you create using the Window
Editor. Thus, you need only define the attributes once, and
they will be automatically inherited and used by any data
window that is linked to that data server.

■ Even though it may be used in many different places (for
example, multiple data servers and data windows), you can
make changes to a field specification quickly and easily, and
in just one place.

Changing a field’s properties is easy, even if numerous data
windows and data servers use the field specification. If you
change a field specification (whether in the DB Server Editor, the
FieldSpec Editor, or the Window Editor), the Visual Objects
repository ensures that the change is automatically propagated
to all other entities that use it. (You’ll see this later on in this
lesson.)

With that explanation, the tour of the Customer data server is
concluded. Let’s move on to create another data server, this
time for the ORDERS.DBF file. By doing so, you’ll get a better
understanding of field specifications by reusing some of the
ones that were already defined for the Customer data server.
You will also see how changes are automatically propagated
when field specifications are modified.

Before moving on, close the DB Server Editor by double-clicking
on its system menu and, if you have made any changes please
do not save them at this time.

Learning the Basics 5–51

Lesson 2: Setting Up the Data Servers

Creating the Orders Data Server

The process that you are about to go through to create the
Orders data server is remarkably similar to the process we went
through while looking at the Customer data server that you
imported in the previous step.

In this section, you will explore some of the features of the
DB Server Editor hinted at in the previous section and will get a
better understanding of how this editor works.

Starting the DB Server Editor

At the moment, you should have the Customer module of the
OE Data Servers library selected in the Repository Explorer,
perform the following steps to create the Orders data server:

1. Right click on the OE Data Servers icon in the tree view to
show the pop-up menu and select New Module:

5–52 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

The Create Module dialog box appears:

2. In the Enter Module Name edit control, type Orders and
choose OK.

 A new module is added to the Repository Explorer’s tree
view pane.

3. Select the Orders module in the tree view, and right click on
its icon to show the pop-up menu:

4. Choose the DB Server Editor command from the second
pop-up menu.

Learning the Basics 5–53

Lesson 2: Setting Up the Data Servers

Importing the Database File

The DB Server Editor provides an easy way for you to get a
quick start on defining a data server. If you have an existing
database file to work with, you can simply import it into the
editor.

To import a .DBF file:

1. Click on the Find button to the right of the File Name edit

control.

 A standard Import dialog box for .DBF files appears:

2. Choose ORDERS.DBF from your Visual Objects
\SAMPLES\GSTUTOR directory, and click Open.

 Information about the selected file is immediately imported
into the editor.

5–54 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

For example, a default name is defined for the data server entity,
based on the name of the file you selected; the path and name of
the selected .DBF file are displayed in the File Name control; and
all the fields defined in the structure of the .DBF file are listed in
the Include list box:

Note: By default, when you first import a .DBF file into this
editor, all fields in the .DBF file are placed in the Include list box.
The fields are presented in the Include list box in the same order
as they appear in the database file header.

Learning the Basics 5–55

Lesson 2: Setting Up the Data Servers

Importing the Index Files

You can just as easily import the two index files associated with
ORDERS.DBF. To do so:

1. Click on the Find button to the right of the Indexes list box.

 This presents you with a standard Browse dialog box for
index files—in this instance .NTX files:

2. Choose ORDCUST.NTX and ORDERNUM.NTX, located in
the \SAMPLES\GSTUTOR directory, by pressing Ctrl and
clicking on each file.

3. Choose the Open button.

5–56 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

The selected index files are imported and now appear in the
Indexes list box:

Controlling Order Because more than one index was selected, the order that they
are imported in is not guaranteed. The first one that the editor
imported will be marked as the controlling order.

Make sure that ORDCUST.NTX is checked in the Indexes list
box, indicating that this file contains the controlling order. If
not, highlight it in the Indexes list box and click on the check
mark button to the right.

Notice that since an index file currently has focus, the Properties
window displays index-related properties. The Order Tags
property indicates the number of orders within an index, which
is of interest if you are using multi-order index files. In this case,
we are using .NTX files, which support only one order per file,
so ORDCUST.NTX shows only one tag, ORDCUST, which
appears in the Orders list box.

Learning the Basics 5–57

Lesson 2: Setting Up the Data Servers

Now click on ORDCUST in the Orders list box. The Properties
window changes, displaying order-related properties:

As you can see, the key expression for ORDCUST is CustNum.
We’ll use this fact in the next lesson, when we set up a
master-detail relationship between the Customers and Orders
data servers using a data window.

Browsing Data

Before customizing the data server lets see what our data looks
like. Choose the large Browse Data button at the end of the
Name field.

This will display the current .DBF file that has been imported to
the DB Server Editor:

You can use the Navigation buttons to scroll through the data
and switch between browse and form view using the toolbar
buttons. After browsing the data close the window. You are
now returned to the DB Server Editor.

5–58 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

Sharing Field Specifications

The next step, after importing the database and index files, is to
customize some of the default field properties that were
automatically created by Visual Objects for the fields in the new
data server. For the most part, you’ll be changing the default
field captions so that they are more descriptive, and you’ll be
adding status bar descriptions.

Before we go on to these tasks, however, we’ll “pull in” some of
the field specifications that are already defined in the Customer
data server. We can do this because both the CUSTOMER and
ORDERS files contain fields pertaining to customer number,
state, and zip code.

The Customer data server was predefined: all required properties
had been filled in for you, and the default field specifications for
the CustNum, State, and Zip fields had already been
customized.

Therefore, since the two .DBF files share common fields, we can
reuse the field specifications already defined for the Customer
data server in our new data server, instead of defining them over
again.

Let’s start with the CustNum field:

1. Click on the CustNum field in the Include list box and then
click on the Properties dialog to change focus to it..

 This field is identical to the CustNum field in the Customer
data server, so we can take advantage of work we’ve already
done by using its CustNum field specification.

2. Scroll through the Properties window to see what the
DB Server Editor defines for you automatically.

Learning the Basics 5–59

Lesson 2: Setting Up the Data Servers

3. When you’re through browsing, click on the FieldSpec
property in the Properties window.

4. Click on the Down arrow, scroll through the list until you

see Customer_CustNum, and then click on it.

 In this step, you are taking properties from the field
specification defined for the CustNum field in the Customer
data server and simply reusing them in the Orders data
server.

 For example, the FS Description property in this server is
updated with the text defined in the other data server (this
property was blank before):

 Or, if you scroll down the list, you can see that the Required
and Validation properties defined for the CustNum field in
the Customer data server have been imported. (These
properties were also blank before.)

5–60 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

 Note: For new and updated field properties, see the
FieldSpec Properties Window topic in the online help.

 Pulling in the existing field specification does all this work
for you—that’s all you need to do for this field.

5. Repeat the steps listed above to associate the Ship_State field
with the Customer_State field specification and the Ship_Zip
field with the Customer_Zip field specification.

6. Click on the Save button in the DB Server Editor toolbar to
save your work so far.

You may be wondering why there appear to be two Caption and
Description properties. This is because both of these properties
have a hierarchical nature in Visual Objects.

Briefly, the Caption and Description properties (at the top of the
Properties window) are associated with a field via its hyperlabel
(described in The Source Code section later in this lesson).
However, each field also has FS Caption and FS Description
properties that are associated with its field specification.

In both cases, the two caption-description pairs serve a common
purpose: the caption is used in the data window you’ll create
later to label the field, and the description is displayed in the
owner window’s status bar when the field has focus.

By default, the system will first use the FS Caption and FS
Description properties defined for a field; the Caption and
Description properties are provided in case you want to override
the corresponding “FS” properties.

Note: This hierarchy is described in greater detail in the “Using
the Window Editor” chapter of the IDE User Guide.

Learning the Basics 5–61

Lesson 2: Setting Up the Data Servers

Customizing Field Properties

The next task is to define some properties for the other
remaining fields.

OrderNum Let’s start with OrderNum:

1. Click on the OrderNum field in the Include list box.

2. In the Properties window, click on the FS Caption property.
Clear the current contents and type in the text Order #, and
press Enter.

3. Click on the FS Description property, type Enter the order
number (required), and press Enter.

4. Scroll down to the Required property, click on it, click on the
Down arrow, and choose Yes from the list box.

 Changing this property to Yes will require that the user type
a value for the field in the resulting application.

5. Click on Required Diagnostic just below, type You must
enter an order number, and press Enter.

 If the user attempts to skip the OrderNum field, this
message will be displayed.

6. Scroll down to Validation, click on it, type
{ |OrderNum| OrderNum > 0}, and press Enter.

 This will require that the user type a positive order number.
The validation rule specified here is in the form of a code
block. Refer to the “Code Blocks” chapter in the
Programmer’s Guide for more information.

7. Click on Validation Diagnostic just below, type The order
number must be positive, and press Enter.

 If the user attempts to enter a negative number or zero into
the OrderNum field, this message will be displayed.

8. Click on the Save toolbar button.

5–62 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

OrderPrice For the OrderPrice field, follow these steps.

1. Click on the OrderPrice field in the Include list box.

2. Click on the FS Caption property, edit the current contents to
read Order Price, and press Enter.

3. Click on FS Description, type Enter the order price, and
press Enter.

4. Scroll down to the Picture property, click on it, type
$$$$$$$.99, and press Enter.

 This will cause the value to display with leading dollar
signs.

5. Optionally, you can continue to customize the remaining
fields in the data server by adding status bar descriptions
and/or customizing the default captions to make them more
readable (for example, for the Ship_Addrs field, you might
change “Ship Addrs” to “Shipping Address”).

 If desired, however, you can skip this task.

6. Click on the Save toolbar button.

Learning the Basics 5–63

Lesson 2: Setting Up the Data Servers

The FieldSpec Editor

Now, you will get a chance to experience the power of using
field specifications. What you’ll do is use the FieldSpec Editor to
make a small change to one of the field specifications shared by
the two data servers. You can then watch how the one change is
automatically propagated to the two data servers using that field
specification.

Before starting on this task, close the DB Server Editor and save
your changes if prompted.

Now, click on the Customer module (displaying its entity listing
in the Repository Explorer’s list view pane). Next, click on the
Type column heading to display the entities by type, (you may
need to scroll the list view to see the Type column). Now you
can easily find the Customer_Zip field specification entity and
double-click on it:

5–64 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

This invokes the FieldSpec Editor, as shown below:

As you can see, the workspace of the FieldSpec Editor is
remarkably similar to the Properties window of the DB Server
Editor when a field is selected. The only difference is that there
is only one entry for the field-specific properties—that is, Name,
Caption, Description, and HelpContext are not present.

The FieldSpec Editor is provided primarily to let you create new
field specifications, independent of a particular data server,
which can then later be associated with fields in a data server.

You can also use the FieldSpec Editor to modify existing field
specifications. If there are any existing entities in the system
already using field specifications that you modify here (for
example, a data server or a data window), the changes you make
in the FieldSpec Editor are automatically propagated to those
entities.

Learning the Basics 5–65

Lesson 2: Setting Up the Data Servers

Let’s explore this last in more detail. In our two data servers
(Customers and Orders), the Customer_Zip field specification is
used to format their individual zip code fields. The Customer
data server you imported already contained the Customer_Zip
field specification, and you then associated that same field
specification with the Ship_Zip field in the Orders data server.

Modifying the Field
Specification

Let’s make a small change to this shared field specification in
the FieldSpec Editor:

1. Scroll to the Picture property and click on it.

2. Type 99999 and press Enter.

3. Close the FieldSpec Editor and save your changes.

Viewing the
Automatic Change
Propagation

Now let’s see how this one change has been propagated
automatically in the two data servers that use this field
specification:

1. In the Customer module’s list view, double-click on the
Customer server entity.

 The DB Server Editor is loaded, and the Customer data
server is opened.

2. In the Include list box, click on the Zip field.

3. Click in the Properties window and scroll through it, until
the Picture property comes into view.

 You will see the picture clause you just entered (which was
not there before).

 Note: For new and updated field properties, see the
FieldSpec Properties Window topic in the online help.

5–66 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

4. Close the DB Server Editor.

5. Now click on the Orders module and then double-click on
the Orders server entity to open the Orders data server.
Take a look at its Ship_Zip field’s Picture property, and you
will see that it has changed too.

Since both data servers pick up the Picture property from the
Customer_Zip field specification entity you edited, both reflect
the change. If any other data servers used this field
specification, they would also reflect the change. In addition, if
there were any data windows using either of these data servers,
the windows would also pick up the change. Visual Objects
takes care of all of this automatically.

That’s all there is to creating a data server. If you have not
already done so, close all copies of the DB Server Editor
currently in use, and return to the Repository Explorer entity
listing for the Orders module. From there, we’ll take a closer
look at the source code generated by the DB Server Editor for the
Orders data server you just created.

Learning the Basics 5–67

Lesson 2: Setting Up the Data Servers

The Source Code

As you may have been observing, each time you choose the Save
toolbar button or the File Save menu command while in an
editor, simply designing pieces of an application in an editor and
then saving your work automatically causes Visual Objects to
generate code. This code can be modified in the Source Code
Editor if desired, but typically you will use the editors to make
changes and then regenerate code when you save the changes.

Nevertheless, even though you probably won’t be directly
modifying the generated code, it may help to take a closer look
at exactly what was just generated for you, so that you get a
better understanding of how all of the generated source fits
together.

Tip: You can follow this discussion by scrolling through the
entity listing to view the various entities or, if you like, you
can double-click on the entities to view them in the Source
Code Editor.

Server and Field
Specification Entities

To start with, when you design a data server in the DB Server
Editor, Visual Objects creates a single server entity. There is
also a field specification entity for each field in the data server.
The purpose of this design is to let you easily edit the entire
data server with the DB Server Editor or just an individual field
specification in the FieldSpec Editor.

Class Entities There are also class entities for the data server and each of its
field specifications. If you double-click on the Orders class
entity, for example, you will see that it inherits from the
DBServer class, which is defined in the RDD Classes library.
Notice, too, that the associated database file for this data
server—cDBFPath—is defined as an instance variable of the
Orders class as part of this inheritance.

Each field specification class entity inherits from the FieldSpec
class (this class is defined in the System Classes library).

5–68 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

Access/Assign Entities Next, there are access/assign method entities for each field, which
provide an object-oriented interface to the database fields.

Init() Method Entities Finally, there are Init() method entities for the data server and
each of its fields.

For the data server, the Init() method does the following:

■ Sets up a file specification for the database file.

■ The FileSpec class helps you manage files, keeping track of
information such as the name and location of the file (called
the file specification). (See the “File Handling” chapter in the
Programmer’s Guide for more specific information.)

■ For each field, defines a hyperlabel, instantiates the
appropriate field specification class, and sets up a data field
using the DataField class

■ The HyperLabel class helps you keep track of certain
information associated with an object (called the object’s
hyperlabel), such as a name, caption, description, and help
context ID. (See the “Hyperlabels” chapter in the
Programmer’s Guide for more specific information).

■ Sets up a file specification for each index file and opens the
files in the appropriate order.

For the field specifications, the Init() methods define hyperlabels
for each field specification and assign values to the various
properties.

Now that you have imported the Customer data server and set
up the Orders data server, the OE Data Servers library is
complete. There are only two steps left to complete this lesson:
building the OE Data Servers library and associating it with the
Order Entry application. Before continuing, close the Source
Code Editor, if you are using it to view the generated code, and
choose No, if prompted to save changes.

Learning the Basics 5–69

Lesson 2: Setting Up the Data Servers

Building the OE Data Servers Library

Anytime you import a new library or make changes to an
existing one, it is necessary to build the library to make sure that
there are no errors in the source code and to make it available in
compiled form to any applications that use it.

You’ve already gone through the process of building the
Standard Application in the previous lesson—building a
library is no different. Simply click on the Build button when
the library has focus, and you’re done.

Adding the Library to Order Entry’s Search Path

After it is built, you need to add this library to the search path of
the Order Entry application. In Visual Objects, an application’s
properties include its name, type (that is, executable, library, or
DLL), and its associated libraries, among other things.

Recall that in the first lesson of this tutorial, you initially
specified these items for the application when you created it.
However, you can change an application’s properties at any time
using the Application Properties menu command.

Let’s use this command now to add the OE Data Servers library
to the Order Entry application’s path:

1. If you haven’t already done so, build the library by clicking
the Build button.

2. Select the Order Entry application in the Repository
Explorer’s tree view.

3. Choose the Application Properties menu command.

 The Application Options dialog box appears.

4. Click on the Libraries tab.

 This will display all the libraries available.

5. Add the OE Data Servers library to your application by
double-clicking on it in the Available list box.

5–70 Visual Objects Getting Started

Lesson 2: Setting Up the Data Servers

 OE Data Servers is then added to the Included list box.

6. Choose OK.

7. Rebuild the Order Entry application by clicking the Build
toolbar button.

Summary

That concludes the lesson in setting up data servers. You’ve
taken a big step in customizing the Order Entry application, but
you won’t be able to see the results of what you’ve done until
you set up a data window that uses these data servers.
Therefore, let’s move on to the next lesson and do just that.

Learning the Basics 5–71

Lesson 3: Creating a Data Window

Lesson 3: Creating a Data Window
In this lesson, you will use the Window Editor to create a data
window. As explained earlier, a data window is a type of window
with which you can associate one or more data servers. Data
windows are preconfigured so that they know how to display
and operate on the information extracted from their underlying
data servers.

Master-Detail For the Order Entry application, we’ll create a data window that
“links” the Customer and Orders data servers in a master-detail
fashion. Recall that CustNum is a field that is common to both
the Customer and Orders data servers. In addition, the Orders
data server uses the CustNum field as its controlling order key.

Thus, the two data servers can be linked together, based on the
contents of this common field, in master-detail fashion. When
data servers are linked in this fashion, the detail data server is
synchronized with the master data server: the detail data server
is automatically repositioned whenever the master data server
moves to a new record. Thus, the data windows containing the
two data servers will display only orders whose customer
number matches that of the current customer record.

Note: The link between the two data servers is established
using the DataWindow:SetSelectiveRelation() method.

Auto Layout To create the data window, you’ll use the Window Editor’s Auto
Layout feature. Using this feature will give you a productive
start on your data window design and will also demonstrate
how a great deal of the information you defined for the two data
servers is automatically picked up by the data window.

5–72 Visual Objects Getting Started

Lesson 3: Creating a Data Window

Starting the Window Editor

To create a data window for the Order Entry application:

1. Click on the Order Entry application in the Repository
Explorer.

2. Click on the New Module button, and in the Create
Module dialog box, type App Windows, and choose OK.

 Note: If you don’t remember where the New Module
button is, simply move the mouse over the toolbar to display
the tooltips for the toolbar items.

3. Click on the App Windows module in the Repository
Explorer. Then click on the New Entity toolbar button, and
from the local pop-up menu, choose Window Editor.

 The following dialog box is displayed; it allows you to
choose what type of window to create, as well as enter a
name for it:

4. Since you are creating a data window, click on the
DATAWINDOW selection, then type CustOrd in the Name
edit control.

5. Choose OK to launch the Window Editor.

Learning the Basics 5–73

Lesson 3: Creating a Data Window

Your desktop should now look something like the following:

Tip: If desired, reposition the Properties window and/or
tool palette.

When you first access the Window Editor for a new window,
you see an empty form template on which you can place
controls, a floating tool palette from which to select the type of
controls to place, and a Properties window to define properties
for the data form and the various controls.

Note: The Window Editor creates a binary form entity, so when
referring to the data window in the Window Editor it will be
referred to as a data form.

5–74 Visual Objects Getting Started

Lesson 3: Creating a Data Window

Window Properties

The Properties window probably looks familiar to you, because
it is very similar to the one you used when working with the
DB Server Editor. Like the DB Server Editor’s Properties
window, this one also changes depending on what currently has
focus in the editor (for example, a form or a control).

Initially, the data form’s blank template is selected, and,
therefore, the Properties window displays properties for the data
form. Let’s take a look at some of the properties available to a
data form.

Caption The first thing you see in the Properties window drop-down list
is the caption of the data form. This caption will appear in the
title bar of the data window at runtime.

Name This is the name of the data form, CustOrd. This is the name
that you entered earlier when you launched the Window Editor.

 Click on the DataWindow tab of the Properties window to
display the next set of properties. Use the scroll bar to view the
properties that are not in view.

View As The View As property controls how the window displays data
when it is initially opened. You can choose either form view or
browse view, which you are familiar with from working with
the data windows in the Standard Application back in the first
lesson of this tutorial.

Data Server Data Server is also a property of a data form. Like View As, this
property will be filled in by the Auto Layout feature later in the
lesson.

Learning the Basics 5–75

Lesson 3: Creating a Data Window

Menu Now let’s take a look at the Menu property. If you remember
from working with the Standard Application, each child data
window had its own menu (StandardShellMenu) that replaced
the shell window’s menu (EmptyShellMenu) when the child
window was open and had focus.

Using the Menu property, we will give our new data window
this same behavior:

1. With the DataWindow tab control selected, click on the
Menu property.

2. Click on the Down arrow button. If StandardShellMenu
appears in the list, choose it from the resulting list box, and
press Enter. If StandardShellMenu does not appears in the
list, type StandardShellMenu into the edit area, and press
Enter.

The StandardShellMenu is now attached to the CustOrd data
window. Note that StandardShellMenu’s toolbar is
automatically associated, too.

Caption You also need to define a caption for the CustOrd window. A
window’s caption appears in its title bar.

1. Select the Hyperlabel tab control and click on the Caption
property.

2. Type Customer Orders and press Enter.

As you can see, there are several more window properties that
we have not discussed, but for this data window, the default
values for these properties will suffice.

5–76 CA-Visual Objects Getting Started

Lesson 3: Creating a Data Window

Using Auto Layout

Now, we want to move on and experiment with the Auto Layout
feature to get the form started:

1. Click on the Auto Layout toolbar button:

Auto Layout toolbar button

 The Auto Layout dialog box appears:

2. Click on the Master Detail Servers radio button.

 This changes the dialog box slightly, as shown below:

Learning the Basics 5–77

Lesson 3: Creating a Data Window

3. Since both of our data servers are defined in the OE Data
Servers library, rather than in the Order Entry application
itself, click on the Include Search Path check box.

 This will cause the Customer data server to appear in both
the Master Server and Detail Server combo boxes:

4. In the Relation combo box, click on the Down arrow
button—a list of the fields in the Customer data server
appears—and choose #CUSTNUM (the common field).

 Thus far, the master data server and the common field are
already defined. Now set the detail data server.

5. In the Detail Server combo box, click on the Down arrow
and choose Orders.

6. In the Order combo box, click on the Down arrow and
choose ORDCUST, which is the controlling order we
specified earlier when we imported the index files for the
Orders data server.

7. Choose OK.

5–78 CA-Visual Objects Getting Started

Lesson 3: Creating a Data Window

The Auto Layout Field Selection dialog box appears:

 This dialog box allows you to select the fields that you want
to be displayed on the window.

8. For our application we will select all of the available fields,
since this is the default, click OK.

A default data form layout is created, using information you
already defined for the Customer and Orders data servers:

Learning the Basics 5–79

Lesson 3: Creating a Data Window

When you use Auto Layout to create a master-detail window,
you actually get two data windows. We’ll refer to them, while in
the Window Editor, as the main data form and the sub-data
form.

A Closer Look at the Main Data Form

You will notice that when you create a data window from a
customized data server, many of the properties defined in the
associated data servers are used by the Window Editor to create
the controls in the data form.

Captions Reused For example, the Window Editor uses the caption defined for
each field in the master data server to create each field’s fixed
text control (either the Caption or FS Caption property, as
defined in the data server).

To see what we mean, click on the First Name label and watch
what happens to the Properties window:

This control functions as a decorative label for the edit control to
its right.

Now, click on the single-line edit control to the right of the First
Name label:

5–80 Visual Objects Getting Started

Lesson 3: Creating a Data Window

This edit control represents the field itself—you can see that the
properties defined for its associated data server field while in the
DB Server Editor are reused here.

Notice the Caption property: this caption is not used by the
single-line edit control because the main data window is
currently in form view (if you recall from Lesson 1,
a data window can be displayed in either form view or browse
view). If you were to switch to browse view (by clicking the
Browse/Form View toolbar button), you would see that the
caption is used for the heading in the corresponding column
control. (You’ll witness this later on in this lesson.)

Descriptions Reused Another example of how the Window Editor reuses data server
properties is its use of the descriptions it picks up from the
underlying data servers. Since a single-line edit control is
currently selected, you can see in the Properties window that the
Description property of that control contains the description of
its corresponding data server field. Later on, when one of these
controls has focus in the resulting application, this information
will be displayed on the status bar of the shell window.

Field Specifications
Reused

Noticed that each single-line edit control picked up the field
specification from its corresponding data server field.

When you run the new application, the picture clauses and
validation rules that you defined for the field specifications will
be enforced by the program when the data window is
displayed. For example, the numbers in the Order Price field
will be formatted accordingly, and the user will be warned if
they attempt to enter an order number less than zero.

Learning the Basics 5–81

Lesson 3: Creating a Data Window

A Closer Look at the Sub-Data Form

Before we explore the sub-data window in more detail, let’s first
resize the main data form, so that the sub-data form is
completely visible (unless it is already in full view). To do this,
first click on the Window Editor’s bottom edge and drag it
downward to expose the bottom edge of the main data form.
Then click the sizing handle in the lower right-hand corner of
this form, and drag it down until the sub-data form is fully
displayed—all standard Windows techniques, by the way.

Tip: If necessary, move the Properties window and the tool
palette out of the way by clicking on their title bars and
dragging them to new positions.

The main CustOrd data form now displays the entire
CustOrd_DETAIL sub-data form:

If you now click on the CustOrd_Detail sub-data form, its
properties are displayed in the Properties window. There are
nine listed on the General tab page, including Name,
RelationString, Order, and Generate Code.

5–82 Visual Objects Getting Started

Lesson 3: Creating a Data Window

The name is inserted by the Auto Layout feature and indicates
that the sub-data form represents the detail data server in the
CustOrd data window. The relation string, also inserted by the
Auto Layout feature, represents the common field used to relate
the sub-data window’s underlying data server (Orders) with the
main data window’s associated data server (Customer). The
Order property reflects the specified controlling order.

Additionally, the Styles tab allows you to select the Tab Stop
option from the Sub-Form Styles dialog box in order to enable
the tab key for the sub-data form. Lastly, the Generate Code
option indicates whether or not source code will be generated
for the sub-data form control.

Opening the
Sub-Data Form

There are, in fact, additional properties that are available to the
sub-data form and to view them, you should double-click on
the sub-data form now. Doing so actually launches a new copy
of the Window Editor, unique to the sub-data form.

As you can see, you get both a new Properties window and a
new tool palette, which allows you to add columns:

Learning the Basics 5–83

Lesson 3: Creating a Data Window

There are many more properties available now—you may notice
that this sub-data form is associated with the Orders data server
and its default view is browse.

Browse View In Lesson 1 you learned that when a data window is displayed
in browse view, it displays each field in the underlying data
server as a column. This is in contrast to form view (the view
used for the main data form) in which each field in the
underlying data server gets a fixed text control and an edit
control.

Note that the column headings in this browse view are extracted
from the captions defined for each field in the underlying data
server (reusing your work in the DB Server Editor).

This is because, like the single-line edit controls in the main data
window, these columns represent the fields themselves. If you
click on a column heading, you can see that the properties
defined for its associated data server field while in the DB Server
Editor are reused here:

5–84 Visual Objects Getting Started

Lesson 3: Creating a Data Window

Finally, note that viewing the sub-data form in this workspace
gives you an idea of how that rectangular control in the main
data window will look at runtime. (The rectangular control is
used for the size and placement; this view is used to illustrate
the column heading text, spacing, etc.) Close the sub-data form
by double-clicking on its system menu and choose No if you are
prompted to save changes.

Customizing Windows

The master-detail window that you just created simply by using
the Auto Layout feature is fully operational and ready to use.
You may, however, choose to modify it by resizing it or moving
or resizing any of its controls, or by changing its properties or
the properties of any control associated with it.

Sizing Windows and
Controls

For example, you’ve already resized the main data form by
clicking and dragging on one of its sizing handles so that the
sub-data form would be fully visible. Similarly, you can resize
its controls using the same technique:

Note: With Some controls, such as radio buttons, although the
overall control can be resized, parts have a fixed size that you
can not change.

Learning the Basics 5–85

Lesson 3: Creating a Data Window

Moving Controls Perhaps you would like the controls to be arranged across the
top of the main data window, with Last Name placed before
First Name, since most customer records are maintained in
alphabetical order by last name. Also, you might like Phone and
Fax placed under Custnum#.

First, if necessary, resize the form to allow the controls to fit in
the form horizontally. To make arranging the controls easier:

1. Place the mouse pointer anywhere on a control.

2. Press the left mouse button and hold it down.

3. Drag the mouse to move the control to the desired location,
and release the mouse button.

4. Repeat steps 1–3 for all fixed text and edit controls.

The CustOrd main data form should now look something like
this:

Notice that there is now more room for the sub-data form, so
you can even resize that, if you like.

5–86 Visual Objects Getting Started

Lesson 3: Creating a Data Window

Positioning Controls There are a number of useful commands on the Edit Arrange
menu that will allow you to arrange these controls so that they
have the same alignment, size, or spacing. These include such
commands as Align Left, Align Right, Center Vertically, Center
Horizontally, Even Vertical Spacing, and so on. See the
Modifying a Window in the “Using the Window Editor” chapter
of the IDE User Guide for more information about moving,
resizing, and positioning controls.

Viewing Tab Order

When you add controls to a form, the system automatically
creates a default tab order for cursor movement. The initial
order is based on the vertical and horizontal position of the
controls. The control in the upper left-hand corner comes first,
and subsequent controls are ordered based on a left-to-right,
top-to-bottom progression.

To view the tab order for a data form, choose the Edit Control
Order menu command. For example, below is the default tab
order of the CustOrd main data form before we made any
changes:

Learning the Basics 5–87

Lesson 3: Creating a Data Window

The Control Creation Order dialog box displays the names of all
the controls, as well as their captions and control types, in tab
stop order as they appear in the source code. It also allows you
to change the cursor tabbing order for a window’s controls by
reordering the controls in the source code.

The Use Mouse button allows you to modify the tab order
interactively, rather than using the more traditional Up and
Down arrow buttons. For more detailed information, see the
online help.

When you customize a data form by rearranging the controls,
the system automatically updates the default tab order until you
save the editor. Once you have saved the design, you are
responsible for maintaining the order.

The Control Creation Order dialog box allows you to change the
default tab order that is set automatically by the system when
you place your controls.

Note: This command affects only the order in which the cursor
moves from control to control within a window; it does not alter
the controls’ actual positions on the window.

For more detailed information, see Changing Tab Order by
Reordering Controls in the “Using the Window Editor” chapter
of the IDE User Guide. Also, refer to the online help.

Moving On

You could make other modifications, such as changing the color
or font used for any control in either the main data form or its
nested sub-data form using the appropriate Properties window.
However, our main data form is fine. Close the Window
Editor—saving the changes, of course—and look at the resultant
source code.

5–88 Visual Objects Getting Started

Lesson 3: Creating a Data Window

The Source Code

Similar to the DB Server Editor, saving your changes in the
Window Editor generates source code. Although you should
never directly modify the generated code, it may help to take a
closer look at exactly what was just generated for you. This will
give you a better understanding of how all of the generated
source code fits together.

Window Entities First, there are form entities for both the CustOrd and the
CustOrd_Detail windows. The purpose of these entities is so
that you can easily edit the data windows with the Window
Editor.

Class Entities There are also class entities for both windows that inherit from
the DataWindow class defined in the GUI Classes library. These
windows can, therefore, be edited and used individually.

Resource and
Constant Entities

There are resource entities for both windows, along with
several constant entities to number the individual edit controls.
In order to see these constants use the View Options menu
command and choose the Entity View tab. Under Hidden
Items, select the Show All Items option and choose OK.

Access / Assign and
Init() Method Entities

Finally, there are access/assign methods for the field edit
controls and Init() methods for both of the DataWindow
subclasses.

These Init() methods are complex, defining all edit controls in
the window’s form view and instantiating a HyperLabel object
for each one. The field edit controls also have an appropriate
FieldSpec object attached.

Then, the data window is attached to the appropriate data server
with the Use() method. If you switch from form view to browse
view, the browse view for the window is defined with the
DataBrowser and DataColumn classes (also defined in the GUI
Classes library).

Learning the Basics 5–89

Lesson 3: Creating a Data Window

Finally, the window establishes its default view with the
ViewAs() method and, in the case of the CustOrd window,
attaches the detail window and establishes the relationship
between the windows using the SetSelectiveRelation() method
mentioned earlier.

Summary

That concludes the lesson in setting up the data window. You
will now move on to modify the EmptyShellMenu to add a
menu command that will open this data window.

5–90 Visual Objects Getting Started

Lesson 4: Modifying the Menu

Lesson 4: Modifying the Menu
In this lesson, you will use the Menu Editor to customize the
EmptyShellMenu entity of the Order Entry application. To this
existing menu structure, you will add a new menu command,
which will be used in the main window (StandardShellWindow)
of the resulting application to open the Customer Orders data
window you just created.

Note: As you probably recall, EmptyShellMenu and
StandardShellWindow were generated as part of the Standard
Application back in the first lesson.

Starting the Menu Editor

To modify this menu:

1. Click on the Standard Menus module in the Repository
Explorer in order to view its entities.

2. Double-click on the EmptyShellMenu binary menu entity.

The Menu Editor is launched—your desktop should now look as
follows:

Learning the Basics 5–91

Lesson 4: Modifying the Menu

The menu structure for the empty shell menu appears as a tree
structure in the Menu Editor workspace, and the preview menu
bar shows the two existing menus, File and Help, across the top
of the window under the normal menu.

Adding the Customer Orders Menu Command

We’re going to add a menu item, the Customer Orders
command, to the File menu just below the existing Open
command:

1. Click on the &Open menu item:

2. Press Enter.

 This opens up a blank line directly below the &Open menu
item in which you can define the new menu command.

3. In the blank line, type C&ustomer Orders....

 This is the name of the menu command as it will appear in
the File menu. Note, however, that the ampersand (&)
character will not appear in the menu; instead, it causes the
letter “u” to be underlined in the menu, indicating it as the
key for selecting the command.

 Note: The “...” is a Windows convention used to indicate
that a menu command displays a dialog box or window.

4. Next, click on Event Name in the Properties window, type
CustOrd, and press Enter.

 A menu command’s Event Name property is used to define
the action that should occur when the user chooses the menu
command in the resulting application. We want the
program to display the Customer Orders data window—
therefore, all we need to do is supply the name of the data
window (note that CustOrd is the data window’s name,
while Customer Orders is its title, or caption).

 That’s all the program needs to know to open the window
when this menu command is chosen.

5. Finally, click on the Description property, type Open the
customer orders window, and press Enter.

5–92 Visual Objects Getting Started

Lesson 4: Modifying the Menu

 This description will appear in the status bar when the menu
command is highlighted.

More on
Event Handling

Our work in the Menu Editor is just about complete. Before we
move on, however, let’s explore in more detail exactly how the
menu command will display the Customer Orders data
window. If you’ll remember, we discussed event handling in
the first lesson of this tutorial, including the hierarchy within
the automatic event-handling system. This is an important
feature of Visual Objects so it bears repeating.

By default, when the system encounters an event name, it first
looks for a method name that matches the event name. If none is
found, it then looks for a window name that matches. Finally, if
no matching method or window name is found, it looks for a
report. Thus, by assigning CustOrd to the event name, choosing
the File Customer Orders menu command will automatically
display the Customer Orders data window.

This feature makes it easy to connect events to menu commands
and window controls (using the Menu and Window Editors,
respectively). You simply enter the name of the method,
window, or report that you want to activate as the Event
property (as you did in the steps above), and the rest is taken
care of automatically.

Learning the Basics 5–93

Lesson 4: Modifying the Menu

Previewing Your Work

At any time, you can select the entries in the Menu Editor’s
preview menu bar (just as you would a real menu) to preview
what your menus look like.

Note, however, that the preview menu bar is only partially
operational. That is, it allows submenus to be pulled down, but
nothing actually happens if you select a menu command. Its
principal intent is to provide visual feedback while you are
designing a menu structure.

To take a look at your new menu command, click on the File
menu in the preview menu bar—you’ll see the new Customer
Orders menu command:

Summary

Your menu is done. Double-click on the system menu to close
the Menu Editor and choose Yes when prompted to save your
work. The majority of the source code for this menu was
reviewed in the first lesson, but if you look at it now, you will
see several new constant entities for the new menu command
you just added.

5–94 Visual Objects Getting Started

Lesson 5: Adding the Ordering Methods

As you have seen, the Menu Editor is very straightforward and
easy to use. In this lesson, you’ve learned a key principle behind
the automatic event handling inherent in all Visual Objects
applications—event handling by name. In the next lesson, you
will use this feature once again to link two new methods to
commands that you will add to the StandardShellMenu.

Lesson 5: Adding the Ordering Methods
If you remember, when you viewed the Customer data server
earlier, it has two associated orders, CUSTNUM.NTX and
CUSTNAME.NTX. As a final enhancement to the Order Entry
application, we’ll create methods to switch the controlling order
for the Customer data server between these two.

To accomplish this, we will first add two commands to
StandardShellMenu’s View menu, “By Name” and “By
Number,” and link them to events named “ByName” and
“ByNum,” respectively. (These events represent the two
methods, ByName() and ByNum(), to be associated with the two
menu commands—more about these later.)

Note that because the By Number menu command represents
CUSTNUM.NTX, which is the default controlling order, it will
be checked when the menu is initially displayed, indicating that
the records in the data window are initially sorted by number.

We’re adding the two new menu commands to
StandardShellMenu, so they’re going to be displayed as soon as
the user opens one or more .DBF files in the application.
However, these menu commands are specifically designed to
work with the Customer Orders window and should only be
available when that window is open.

Learning the Basics 5–95

Lesson 5: Adding the Ordering Methods

Therefore, we’ll disable the By Name and By Number
commands when we create them, so that when
StandardShellMenu is first displayed, the commands appear
grayed, or dimmed. We’ll then add code to the CustOrd
window’s Init() method to enable the commands when the
Customer Orders data window is opened.

Note: An enabled menu command can be selected by the user. A
disabled menu command appears dimmed and cannot be
selected; it remains unavailable until it is enabled by the
application.

We will also import two methods, named ByName() and
ByNum(), which contain the necessary code to change the
controlling order for the data displayed in the Customer Orders
window. ByName() changes the controlling order to
CUSTNAME.NTX, and ByNum() changes it to CUSTNUM.NTX.
Note that these are the event-handling methods associated with our
two new menu commands; these methods also contain code to
check (and uncheck) the appropriate menu command so that the
View menu always reflects the current order in the window.

Modifying the Menu

Let’s start, then, by customizing StandardShellMenu to add the
two new menu commands. If you do not have the Standard
Menus module selected, click on this module in the Repository
Explorer. Then double-click on the StandardShellMenu menu
entity to load it into the Menu Editor.

Adding Commands

Since the methods that we are going to add change the manner
in which the data is displayed, it makes sense to put the
commands on the View menu.

5–96 Visual Objects Getting Started

Lesson 5: Adding the Ordering Methods

Note that the two new menu commands are distinct from the
other commands on the View menu. Therefore, we’re going to
add a separator to the menu before we actually add the
commands. (In Windows applications, separators are used to
logically group items within a menu.)

Follow these steps to insert a separator and the two new menu
commands at the bottom of the View menu:

1. Use the scroll bar in the Menu Editor to scroll down to the
View menu, and then click on the &Table menu item:

2. From the topmost Edit menu, choose the Add Item

command, and then choose Add Separator from the
resulting pop-up menu.

 Note: Remember, the menus in the lower menu bar are just
prototypes of the menus you are creating in this editor.

Learning the Basics 5–97

Lesson 5: Adding the Ordering Methods

 This immediately adds a separator to the menu structure:

3. Press Enter to create a new, blank menu item, and type
By &Name in the new line.

4. Press Enter again, and type By Nu&mber in the next new
line.

The new menu commands are now part of the menu structure;
next, you need to define properties for them.

5–98 Visual Objects Getting Started

Lesson 5: Adding the Ordering Methods

Defining Menu Properties

In order to operate properly, the program needs to know what
event names the new menu commands are associated with, as
well as what their initial status should be. We’ll also define
status bar descriptions for them.

By Name Let’s start with the By Name menu command:

1. Click on the By &Name menu item in the menu structure.

2. In the Properties window, click on Event Name, type
ByName, and press Enter.

 This is the name of the method that this menu command
should be associated with; it will switch the controlling
order to CUSTNAME.NTX. (You’ll import this method
later.)

3. Click on Description, type View orders by customer name,
and press Enter.

4. Click on the Init. Enabled property, click on the Down
arrow, choose No from the resulting list box, and press
Enter.

 This changes the value of this property to “No,” thereby
causing the By Name menu command to be disabled when
the menu is first displayed. (Later, we’ll add code to the
CustOrd:Init() method to enable this menu command when
the CustOrd data window is open.)

Learning the Basics 5–99

Lesson 5: Adding the Ordering Methods

By Number Now, you will follow similar steps for the By Number menu
command:

1. Click on the By Nu&mber menu item in the menu structure.

2. In the Properties window, click on Event Name, type
ByNum, and press Enter.

 This is the name of the method that this menu command
should be associated with; it will switch the controlling
order to CUSTNUM.NTX. (You’ll import this method later.)

3. Click on Description, type View orders by customer
number, and press Enter.

4. Click on the Init. Enabled property, click on the Down
arrow, choose No from the resulting list box, and press
Enter.

 Like the By Name menu command, By Number applies only
to the CustOrd data window, so it will be disabled when the
menu is initially displayed. (Later, we’ll add code to the
CustOrd:Init() method to enable this menu command when
the CustOrd data window is open.)

5. Click on the Init. Checked property, click on the Down
arrow, choose Yes from the resulting list box, and press
Enter.

5–100 Visual Objects Getting Started

Lesson 5: Adding the Ordering Methods

 The default controlling order for the CustOrd data window
is CUSTNUM.NTX. Therefore, the By Number menu
command should be checked when the CustOrd data
window is initially displayed. (The ByName() and ByNum()
methods that we’ll import later will contain code to
appropriately toggle the check mark between the two menu
commands.)

That’s all you need to do to the menu (if you like, you can use
the preview menu bar to see the new commands). When you are
finished, close the Menu Editor and save your work.

Note: You will not be able to save your menu entity if there are
any empty menu items. Use the Edit Delete Item menu
command to delete a blank menu item, if necessary.

Creating the Methods

The next step is to add the functionality for the By Name and By
Number menu commands. Since both the data server on which
the methods will operate and the menu to which the methods
are attached are owned by the CustOrd class, we’ll add the
methods to the App Windows module in the Order Entry
application.

To do this:

1. Select the App Windows module in the Repository Explorer.

2. Click on the New Entity toolbar button and choose Source
Code Editor from the local pop-up menu.

 The Source Code Editor window displays and is empty.

3. Choose the File Import command.

 This presents you with a standard Import dialog box for
.PRG files.

4. Choose the file named CHGINDEX.PRG from your Visual
Objects \SAMPLES\GSTUTOR directory.

 The code from the .PRG file is imported into the Source
Code Editor:

Learning the Basics 5–101

Lesson 5: Adding the Ordering Methods

There are three entities in this source code: a TEXTBLOCK
statement and two methods belonging to CLASS CustOrd. (The
CustOrd class was created for you by Visual Objects when you
saved the CustOrd window in the Window Editor.)

The TEXTBLOCK Entity

The TEXTBLOCK entity is automatically inserted by Visual
Objects every time you import a source file to denote the name,
date, and time of the imported file.

5–102 Visual Objects Getting Started

Lesson 5: Adding the Ordering Methods

The Methods

The two methods, ByName() and ByNum(), are just a few lines
long:

METHOD ByName() CLASS CustOrd
 SELF:Menu:UnCheckItem(IDM_STANDARDSHELLMENU_VIEW_BY_NUMBER_ID)
 SELF:Menu:CheckItem(IDM_STANDARDSHELLMENU_VIEW_BY_NAME_ID)
 SELF:Server:SetOrder("CUSTNAME")

METHOD ByNum() CLASS CustOrd
 SELF:Menu:UnCheckItem(IDM_STANDARDSHELLMENU_VIEW_BY_NAME_ID)
 SELF:Menu:CheckItem(IDM_STANDARDSHELLMENU_VIEW_BY_NUMBER_ID)
 SELF:Server:SetOrder("CUSTNUM")

The source code for these two methods is nearly identical.
Basically, the first one changes the controlling order to
CUSTNAME.NTX, and the second changes it to
CUSTNUM.NTX.

Let’s take a line-by-line look at this code, using the ByName()
method as an example, to see exactly what these methods do.

METHOD ByName() CLASS CustOrd

This statement declares the ByName() method as belonging to
the CustOrd class.

SELF:Menu:UnCheckItem(IDM_STANDARDSHELLMENU_VIEW_BY_NUMBER_ID)

This method call unchecks the View By Number command in
the StandardShellMenu. If you remember from reviewing the
source code for both menus in this application, each option has
several define constants associated with it. One of these is a
unique number that identifies the menu item. In this case,
IDM_STANDARDSHELLMENU_VIEW_BY_NUMBER_ID is the
unique identifier for the View By Number command.

The UnCheckItem() method is defined in the Menu class (all
menus created in the Menu Editor automatically inherit from the
Menu class). The method takes the unique identifier as an
argument, so it knows which menu item you are referring to.
Finally, “SELF:Menu” returns the menu owned by this data
window, directing the UnCheckItem() call to the proper object.

Learning the Basics 5–103

Lesson 5: Adding the Ordering Methods

Note: SELF:Menu:MethodCall is the standard construction that
you will use to direct a method invocation to the owned menu of
any window. You will see it again later in this lesson when
modifying the CustOrd:Init() method.

SELF:Menu:CheckItem(IDM_STANDARDSHELLMENU_VIEW_BY_NAME_ID)

This method call checks the By Name command on the View
menu, using code almost identical to that described above.

Note: Since the ByName() method is called when the View By
Name menu command is chosen, it will remove the check mark
displayed next to the By Number command and place a new
check mark next to the By Name command. This way, the menu
will always reflect the correct controlling order.

SELF:Server:SetOrder("CUSTNAME")

This method call changes the controlling order to
CUSTNAME.NTX. This is accomplished using the SetOrder()
method (which is defined in the DB Server class, found in the
RDD classes library from which our data servers inherit).

Similar to the manner in which the data window’s menu was
identified, “SELF:Server” identifies its data server, properly
directing the SetOrder() call.

Note: SELF:Server:MethodCall is the standard construction that
you will use to direct a method invocation to the owned data
server of any window.

Now, close the Source Code Editor, saving the imported code,
and we’ll move on to the final step in this lesson. What we have
done so far is sufficient to add the menu commands to the
StandardShellMenu and define their functionality, but since both
menu commands are initially disabled, we could not use them if
we stopped here.

5–104 Visual Objects Getting Started

Lesson 5: Adding the Ordering Methods

Enabling the Menu Commands

The reason behind initially disabling these menu commands was
that the StandardShellMenu is shared by many different data
windows, and none of them, besides CustOrd, have the
associated index files necessary to properly utilize these
commands. Our strategy was to disable them by default and
enable them only when they apply (that is, when CustOrd is
open).

The CustOrd class has an associated Init() method that is called
whenever the class is instantiated, and the class is instantiated
only when the CustOrd window is opened. This is the correct
time for the menu items to be enabled but remember that we
said, “You must never edit generated code”.

The reason you must never edit generated code is simple. If you
make manual changes to the generated code and save it, then go
into the editor, make some changes and save them, the changes
that you made manually will be lost and you will need to make
them again. However, you will often need the window to react
differently as it is being instantiated, just as we need it to now.

To allow for the tailoring of windows, menus, servers and in fact
almost all objects, Visual Objects automatically provides calls to
two methods from the Init methods of objects, the PreInit() and
PostInit() methods. These two methods are called by the
generated code, one before the main code is run and one after it
has finished and easily provide us with an opportunity to tailor
our window without the dangers described above

To customize the CustOrd instantiation, method:

1. Click on the AppWindows module in the Repository
Explorer to display its entities.

2. Click on the New Entity toolbar button and choose Source
Code Editor from the local pop-up menu.

 The Source Code Editor window displays and is empty.

Learning the Basics 5–105

Lesson 5: Adding the Ordering Methods

3. Type the following line of code:

METHOD PostInit() CLASS CustOrd

4. Press Enter to move to the next line and, type the following
line of code:

SELF:Menu:EnableItem(IDM_STANDARDSHELLMENU_VIEW_BY_NAME_ID)

5. Press Enter again, and type the next line of code:

SELF:Menu:EnableItem(IDM_STANDARDSHELLMENU_VIEW_BY_NUMBER_ID)

The first line of code declares that this is a method named
PostInit and that it belongs to the CustOrd class. The other two
lines of code enable the View By Name and By Number menu
commands for the CustOrd window, similar to the way in which
the ByName() and ByNum() methods checked and unchecked
the menu commands.

Because the enabling of these menu options takes place in a
method of the CustOrd window, they will no normally be
available to any other window that may use this same menu
class.

To save this new code, double-click on the system menu and
choose Yes when prompted.

5–106 Visual Objects Getting Started

Lesson 5: Adding the Ordering Methods

Summary

With just a few lines of source code and a slight change to the
StandardShellMenu, you’ve added quite a bit of functionality to
the Order Entry application. You’ve learned some valuable tips,
both on managing menus—by exploring some of the methods
defined for the Menu class (such as EnableItem() and
CheckItem())—and accessing methods defined for the data
server (such as SetOrder()).

Both of these techniques were accomplished using the
ownership relationships between the window and its menu and
data server, and the knowledge of these relationships by the data
window object through its Menu and Server properties. So,
you’ve also learned a lot about where to put the source code to
manage events (such as menu commands) and are probably
feeling pretty comfortable about how all of the components in
the Order Entry application fit together.

Next, you will build Order Entry and see all of your customized
features in a working application.

Learning the Basics 5–107

Lesson 6: Running the Order Entry Application

Lesson 6: Running the Order Entry Application

At this point, you’ve completed the tutorial, but you still
haven’t seen your Order Entry application in action. So, build
the new Order Entry application now (just click on the Build
button, as always).

Generating an Executable File

So that you can complete the development cycle, this time,
instead of running the new application from within the IDE (like
you did for the Standard Application in the first lesson), you will
generate an executable file and run it from Windows.

To do this, click the Make EXE toolbar button.

A dialog window will be displayed to that you can see
something is happening and, when this closes, Visual Objects
will have generated the Order Entry.EXE file.

When the Standard MDI Sample was imported to start with, the
path to the .EXE was pointing at %ExecutableDir% which is the
system variable for the C:\CAVO27\Bin directory. Therefore,
the OrderEntry.Exe will have been created in this directory. If
you have changed that path then it will be wherever the
Application Properties path is pointing.

Note: Remember that the executable file name and folder were
specified in the Properties dialog box when you originally
created this application.

5–108 Visual Objects Getting Started

Lesson 6: Running the Order Entry Application

Running the Application

Using the Windows Explorer, go to the C:\CAVO27\Bin
directory and locate the OrderEntry.Exe file.

You can now run the Order Entry application by simply double
clicking on the OrderEntry.exe.

After a short display of a splash screen, it is loaded as follows:

Looking at the New Features

Let’s take a look at some of the new features you added to the
application.

Menu Changes For example, if you open the File menu, you will see the
Customer Orders command that you added to the
EmptyShellMenu:

Learning the Basics 5–109

Lesson 6: Running the Order Entry Application

Master-Detail Window Choose the Customer Orders command, and you will see the
Customer and Orders database servers displayed in the
master-detail data window that you designed. If you then resize
the shell window and the Customer Orders window so that the
sub-data window is completely visible, your screen should look
similar to the following:

Sub-Data Window Scroll through the customer records using the navigation
buttons on the toolbar, and watch as the orders sub-data
window is updated to reflect the current customer. You will also
notice that the customer records are in order according to the
customer number, which is due to the fact that the
CUSTNUM.NTX index is defining the controlling order:

5–110 Visual Objects Getting Started

Lesson 6: Running the Order Entry Application

Picture If you scroll the orders window until the Order Price column
comes into view, you will see the picture formatting that you
defined in the Orders data server:

Validation Scroll the sub-data window back to the left until the Order #
field comes into view. You may remember that when you
created the Orders data server, you specified a validation rule
and diagnostic message for this field to prevent negative
numbers. Now, double-click on the field, type -1, and press Tab
to move to the next field.

Learning the Basics 5–111

Lesson 6: Running the Order Entry Application

Although the validation rule cannot prevent you from moving to
a new field, if you now click on the Go Next navigation button,
you will see the validation diagnostic message “The order
number must be positive” and this warning box:

Also, if you attempt to close the file at this point, the invalid data
will not be propagated down to the actual database.

Description Move the cursor out of the sub-data window to one of the other
field controls (such as Custnum #). Look at the status bar, and
you will see the description for the field with focus. Click on
another field, and watch as the status bar is updated with a new
description.

Controlling Order Now open the View menu, and you will see the By Name and By
Number commands, with By Number checked:

5–112 Visual Objects Getting Started

Lesson 6: Running the Order Entry Application

Choose By Name, and the controlling order for the Customer
data server will change to CUSTNAME.NTX. Choose the View
Table command, and you can easily see that the customers are
now in order by last name instead of customer number:

Take a look at the View menu again—you will see that the By
Name menu command is checked. (If desired, choose By
Number to return to the previous controlling order.)

The last part that we need to look at is not in this window so, close
the CustOrd window by double-clicking on the system menu. You
may be warned that there is invalid data, which will not be saved; if
so, choose Yes.

Learning the Basics 5–113

Lesson 6: Running the Order Entry Application

Now, using the ordinary File Open command, open any Dbf file.
When the file is open in a data window, open the View menu
again. Notice that the By Name and By Number commands are
grayed out, because we made sure that they would only be
available for the CustOrd window:

When you have filished examining the application you can close it in
the usual way.

5–114 Visual Objects Getting Started

Lesson 6: Running the Order Entry Application

What’s Next

That concludes this tutorial of Visual Objects. You have learned
some important concepts regarding the structure of an MDI
application and have seen how the Standard Application fits into
that structure and provides a starting point for your own
customized application.

In just a few lessons, you have experimented with most of the
visual tools available in the IDE and have seen how they interact
with one another through the source code that they generate.
You have also written and linked in some source code of your
own.

Now that you have learned how to create, compile, and execute
a Visual Objects application, you may want to go on to the IDE
User Guide, which provides more detailed information about the
IDE, especially the Repository Explorer and visual editors,
editing and debugging applications, and creating .EXEs. Or, to
learn more about programming in Visual Objects, read through
the Programmer’s Guide.

Learning the Basics 5–115

	Visual Objects 2.7 - Getting Started Guide
	Contents
	Chapter 1 - Introduction
	Welcome to Visual Objects!
	Visual Programming Tools and a Complete IDE
	A Fully Object-Oriented Language
	Open Database Access
	An Active Repository
	A Native Code, Incremental Compiler
	A Portable Executable Format, Incremental Linker
	Reporting Using the Report Editor
	An Open Architecture

	Visual Objects Features
	In This Guide
	What You Need to Know
	General Typographic Conventions
	Getting Help

	Chapter 2 - Installing and Starting Visual Objects
	Installing Visual Objects
	AutoStart Installation
	Manual Installation

	Before Starting Visual Objects
	Starting Visual Objects
	What’s Next

	Chapter 3 - Object-Orientad Programming Concepts
	Why Object-Orientation?
	The Paradigm Shift
	What Is an Object?
	What Is a Class?
	Inheritance: Superclasses and Subclasses
	A Real-World Example
	Additional Strengths of OOP
	Encapsulation
	Modularity and Reusability
	Summary

	The Visual Objects Libraries
	What’s Next

	Chapter 4 - An Overview of the IDE
	Repository-Based Development
	The IDE Tools
	The Repository Explorer
	Managing Projects
	Browsing Applications and Modules
	Viewing Entities at the Module Level
	Viewing Entities at the Entity Level
	Browsing Classes
	Error Browser

	The Editors
	Source Code Editor
	Data Server Editors
	The FieldSpec Editor
	Window Editor
	Menu Editor
	Report Editor
	Image Editor

	The Debugger

	What’s Next

	Chapter 5 - Learning the Basics
	Lesson 1: A Tour of the Standard Application
	Building and Running the Standard Application
	A Closer Look at the Application
	MDI Application Structure
	The App:Start() Method
	The Shell Window
	The Empty Shell Window
	The Standard Shell Window
	The Child Windows
	Default Event and Error Handling

	A Closer Look at the Standard Application
	The Empty Shell Window
	Opening Database Files
	Switching Between Form and Browse View
	The Standard Shell Window
	Opening Multiple Windows
	Using OLE Database Files

	Summary

	Lesson 2: Setting Up the Data Servers
	Importing the OE Data Servers Library
	A Quick Tour of the Customer Data Server
	Loading the Customer Data Server
	The Indexes List Box
	The Orders List Box
	The Fields Group Box

	Creating the Orders Data Server
	Starting the DB Server Editor
	Importing the Database File
	Importing the Index Files
	Browsing Data
	Sharing Field Specifications
	Customizing Field Properties
	The FieldSpec Editor

	The Source Code
	Building the OE Data Servers Library
	Adding the Library to Order Entry’s Search Path
	Summary

	Lesson 3: Creating a Data Window
	Starting the Window Editor
	Window Properties
	Using Auto Layout
	A Closer Look at the Main Data Form
	A Closer Look at the Sub-Data Form
	Customizing Windows
	Viewing Tab Order
	Moving On

	The Source Code
	Summary

	Lesson 4: Modifying the Menu
	Adding the Customer Orders Menu Command
	Previewing Your Work
	Summary

	Lesson 5: Adding the Ordering Methods
	Modifying the Menu
	Adding Commands
	Defining Menu Properties

	Creating the Methods
	The TEXTBLOCK Entity
	The Methods

	Enabling the Menu Commands
	Summary

	Lesson 6: Running the Order Entry Application
	Generating an Executable File
	Running the Application
	Looking at the New Features
	What’s Next

